CPFD Software is pleased to continue our longstanding support of the American Institute of Chemical Engineers. The 2021 AIChE Annual Meeting will take place in-person in Boston (November 7-11) and in a virtual format (November 15-19).
Peter Blaser, CPFD’s VP Operations, will present a paper co-authored with Ali Akhavan (CPFD’s Senior Process Engineer – Fluidization) entitled CFD Modeling and Liquid Vaporization: Industrial FCC Riser Feed Injection Application on Monday, November 8, 2021 at 3:30 PM.
Abstract
Computational fluid dynamics (CFD) modeling has been used to simulate FCC risers for more than a decade. Riser simulation has been performed with a variety of commercial CFD tools including Barracuda Virtual Reactor.
Historically, for CFD modeling with reactions, the hydrocarbon feed to the FCC riser is assumed to be instantly vaporized, or very simple approximations are made to close the mass balance between phases. However, the liquid injection, liquid penetration, spray angle, droplet size distribution, liquid-solid contacts, vaporization and therefore gas-phase expansion are some of the important parameters that can only be captured if the feed is injected as liquid. Therefore, liquid feed injection, as opposed to injecting the feed in gas phase, is far closer to reality, and critical to typical phenomena of interest for risers.
In this work, we have used Virtual Reactor to simulate an industrial scale FCC riser for a Gulf Coast refinery. The feed is injected to the riser as discrete liquid droplets. Part of the liquid feed directly vaporizes into gas phase while some of the liquid forms a liquid film on the catalyst particles. This film, then vaporizes into gas-phase using the heat from both the gas and the particles. This mechanism is similar to that of real-life liquid feed injection and vaporization in FCC risers.
For this application, the liquid feed injection is characterized by features such as droplet size distribution, spray angle, momentum flux distribution, etc. Liquid penetration, liquid film transfer from droplets to catalyst particles and vaporization are captured with the model. Overall vaporization times obtained from the model agree with commercial riser design criteria. We also demonstrate in this work that liquid feeds, consisting of multiple components with different boiling points, show vaporization profiles agreeing with expectations for such multi-component hydrocarbon feed vaporization.
The paper is presented as part of the Particle Technology Forum Session 194 – Fluidization: Industrial Application of Computational and Numerical Approaches to Particle Flow & Cohesive Materials co-chaired by Michael Molnar, The Dow Chemical Company, Andrew P. Santos, Princeton University, Reza Mostofi, Honeywell / UOP and Fanxing Li, North Carolina State University.
To schedule a one-on-one meeting with CPFD Software prior to the meeting, please contact us. Visit the AIChE website for more information on the 2021 AIChE Annual Meeting.
AIChE
AIChE is the world’s leading organization for chemical engineering professionals, with more than 60,000 members from more than 110 countries. AIChE has the breadth of resources and expertise you need whether you are in core process industries or emerging areas, such as translational medicine. CPFD Software is a long-time supporter of the AIChE Particle Technology Forum (PTF).