GAINING INSIGHT INTO YOUR RESULTS USING ENSIGHT FOR BARRACUDA

Kevin Colburn, Sr. Application Engineer, CEI kevin@ceisoftware.com

CEI – WHO ARE WE?

- Computational Engineering International, Inc.
- 1994 spun off from Cray Research
- Sole Developers of EnSight
- 500+ Customers, 1500+ copies worldwide
- Largest Markets:
 - Automotive, Aerospace, Energy,
 - Defense, Turbomachinery, Petrochemical
- Focused on visualization and analytical data extraction
- Technology & Customer Driven, Employee-owned Company
- Based on Apex NC, with offices in Detroit, Houston, Munich, Pune, Tokyo
 www.ceisoftware.com

ENSIGHT – WHAT IS IT?

- General Purpose Post processing software for CFD/FEA/CAE Simulations.
- ~50 direct reader formats, many more export to our format.
- Interactive, extensive feature set
- Market leading animation
- Right Mouse Menus, Click-n-Go Control
- Extensive scripting and batch operation
- Multi-Case comparisons
- Parallel processing; Client-Server based
- Apple/Linux/Windows native program
- Stereo/Head tracking/Immersive environments

ENSIGHT 10.1

- Latest version of EnSight focused on drag/drop interface with more direct access to features and capabilities.
- Focused on providing the best interactive, dynamic, responsive, capable environment for extracting the "story" from your simulation.

CHALLENGES

- Extracting out the visual clarity to the flow field.
- Reducing data order
 - Separating out the temporal fluctuations from time averaged values.
 - Spatial reducing information (radial average, 2D distribution).
 - Venn Diagram Variable operations (Multi-variable Filtering).
- Seeing inside complex flow fields with Volume Rendering.
- Sharing an interactive "scenario" with colleagues/designers.

CALCULATOR OPERATIONS

- EnSight has a fully functional variable expression calculator.
 - PreDefined functions like Min, Max, Spatial Mean, Integral, Volume, etc.
 - Resulting Calculated Variables can be
 - Spatial variables (i.e. Pressure * Density)
 - Temporal Variables (i.e. Temporal Min, Max, Average)
 - "Constant" variables (i.e. Max of Temperature on a 'part')

TEMPORAL INFORMATION

- Temporal Max of "Temperature" on Fluid Domain
- Each Element now has stored its maximum over a defined time range.
- Gives a better indication of the upper bound of temperature

TEMPORAL MIN

- Temporal Min of "Temperature" on Fluid Domain ۲
- Each Element now has stored its minimum over a defined time range.
- Gives a better indication of the lower bound of temperature...
- Indication of historically cold spots in the model.
- IsoSurface of Temporal Min f Temp = 1250. Indication of colder spots.

SPATIAL AVERAGING OF DATA

- Initially I have a 3D volume, and 3D distribution of a variable.
- Goal: To boil this data down into an average value versus distance.
- Method:
 - A. Create a Clip in a Z direction through Fluid.
 - B. Calculate Average Variable (Temperature) on the Clip (using Spatial Weighted Mean).
 - C. Use a "Part Constant Query Tool" to record values of Average Temperature vs. Z location of the clip

SPATIAL AVERAGING OF DATA

Graph is a reduced spatial representation of the temperature variation vs. Height

At each Z location, EnSight calculates Min, Average, Max values, and collects as Z is swept.

SPATIAL RANGE OF DATA

 Using the Part Constant Query, Creating a graph of the min, average, and max value of Av_Tf as a function of theta about the device center.

FILTERING

- Utilize Filtering capability in EnSight to filter out elements (discrete or continuous domain) according to variable values.
- Example: Filter out all particle with ResTime > 5.0 seconds

C Part filter by variable (model parts only)	X
▼ Filter 1	
✓ Active	
Variable ResTime 🔻]
Component Mag 🔻	
9 5.000000	
None	-
Component Mag 🔻	
- ▼ Filter 2	
And Active	
Variable None	1
	ļ
	-
Component Mag	
Component Mag	
Filter 3	
→ Filter 4	
Filter 5	
h filter 6	
ч	
Apply	Help

FILTERING EXAMPLE

No Filtering (all Particles)

Filter <u>out</u> particles with ResTime > 5 (ie newbies)

Filter <u>out</u> particles with ResTime > 5 and Temperat > 1200 (new and cold)

FILTERING

- All Calculations are effected by Filtering.
 - You can therefore calculate values on your filtered particles.
 - Ie. How much mass do I have with Res Time < 5 and Temperature < 1200?
 - How does that vary over time? (Right Click on this Constant variable and plot vs. time).

FILTERING EXAMPLE

2D PART RENDERING, VARIABLE OPACITY

- Rather than color clips via variable RGB, color by transfer function of opacity * RGB.
- Alpha on vertical axis (0 to 1)
- Variable on horizontal axis (min to max)
- Transfer function is relationship of alpha and variable.
- Resultant RGB*alpha, based on transfer function

C Palette editor	
Palette: CO2_nf	
0.0 Range used 0.163898	
0.0 Variable extrema 0.163898	
Set range to: Select one	
Simple Advanced Markers Options	
Editor type: Linear 🔻	
Component: 🔘 R 🔘 G 🔘 B 🕘 A	
Location: 0.163898 Value: 0.932203	
/	
RGBA HSVA Update: Mouse up	
Node locking: Color channels	
Cock levels to control points	
Help	

CLIP WITH VARIABLE OPACITY

SE

...Analyze, Visuali

3D PART, VARIABLE OPACITY (VOL RENDERING)

ENLITEN FILES

- Export Result in a Dynamic 3D format.
- No license, Download, or Instructions Needed.
- Full 3D Capability
- Self-extracting (embedded) executable for Windows or Linux

EXAMPLE ENLITEN FILES

- Example of static EnLiten file, two variables, viewports linked.
- Linked here
- Example of static EnLiten file, particles as spheres, viewports linked.
- Linked here
- Example Transient EnLiten file of 50 timesteps, two variables, viewports linked.
- Linked here

Questions?

THANK YOU