

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Barracuda simulation of a CFBC test rig: comparison with experimental results

Sebastian Krusch

Department of Energy Plant Technology (LEAT) Ruhr-University Bochum, Germany

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Introduction

 Profile Measurements of gas emissions, temperature and pressure in a 0.1 MW circulating fluidized bed combustor

- Two different bituminous coals
 - German Auguste Viktoria
 - US High Sulfur
- Global kinetic approaches from literature

ΈΑΤ

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Thermal capacity:	100 kW
Combustor height:	~ 5.3 m
Outer diameter:	0.7 m
Inner diameter:	0.2 - 0.3 m
Volume flow primary air:	~ 90 m_N ³ /h
Volume flow Siphon air:	5 m_N^3/h
Velocity:	1.4 - 3.5 m/s
Residence time	~ 3 - 4 s
Max. temperature:	~ 900°C
Max. airpreheater temp.:	~ 450°C
d ₅₀ of bed material:	90 µm

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Measurements

- 18 Measurement ports: pressure, temperature, gas probes
- Gas analysis: O₂, NO_x, CO, CO₂, N₂O, CH₄, SO₂, C_xH_y
- FTIR Measurements (31 species)
- Bedash and flyash samples
- Planned: capacity solid concentration probe, solids sampling at the downer

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Solid characteristics

Fuel	d ₅₀	d ₉₀
	[µm]	[µm]
US High Sulfur	768	2,940
AV	642	2,482
Sand	110	190

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Solid characteristics

	US High Sulfur	AV
Ultimate Analysis [wt%, dry]		
Carbon	72.39	79.36
Hydrogen	4.83	4.81
Nitrogen	1.52	1.85
Sulfur	2.33	1.08
Oxygen (Rest)	7.97	5.37
Proximate Analysis [wt%, raw]		
Ash	10.55	7.29
Volatile Matter	33.42	27.01
Fixed Carbon	52.31	62.46
Moisture	3.72	3.24
Calorific Analysis [MJ/kg, dry]		
LHV	30.5	31.2

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Test conditions

Primary air	86 m _N ³ /h
Siphon air	4.4 m_N^3/h
Air-ratio	1.2
Average combustor temperature (T1-T4)	850°C
Superficial gas velocity	1.4 - 3.1 m/s
Feed temperature primary air	420°C
Feed temperature siphon air	60°C

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Simulation settings

Particle to wall interaction	Normal retention coefficient e _n	0.85
	Tangential retention coefficient e _t	0.85
	Diffuse bounce D _f	2
Grid	Real cells	160,000
Drag model	Weng-	Yu with EMMS
Initial bed inventory	Quartz sand	16.5 kg
Initial number of numerical particles		3.5e+5

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Chemical kinetic parameter

Reaction	Reaction rate
$CO+H_2O\rightarrow CO_2+H_2$	$R_1 = (-k_1 C_{CO}^{.5} C_{H2O}) \left[\frac{mol}{m^3 s}\right], [1]$
$CO_2+H_2\rightarrow CO+H_2O$	$R_{2} = (-k_{2}C_{H2}^{.5}C_{CO2})\left[\frac{mol}{m^{3}s}\right], [1]$
$CH_4+1.5O_2 \rightarrow CO_2+2H_2O$	$R_3 = (-k_3 C_{CH4}^{3} C_{O2}^{1.3}) \left[\frac{mol}{m^3 s}\right], [2]$
$2H_2+O_2 \rightarrow 2H_2O$	$R_4 = (-k_4 C_{H2}^{1.5} C_{O2}) \left[\frac{mol}{m^3 s}\right], [3]$
$CO+0.5O_2 \rightarrow CO_2$	$R_5 = (-k_5 C_{CO} C_{H2O} \cdot {}^5 C_{O2} \cdot {}^{25}) \left[\frac{mol}{m^3 s}\right], [4]$
$C_2H_2+1.5O_2 \rightarrow 2CO+H_2O$	$R_6 = (-k_6 C_{02} C_{C2H2}) \left[\frac{mol}{m^3 s}\right], [3]$

Reaction	Reaction rate
$C+H_2O\rightarrow CO+H_2$	$R_{7} = (-k_{7_{1}}C_{H2O} + k_{7_{2}}C_{H2}C_{CO})\left[\frac{mol}{s}\right], [5]$
C+CO ₂ →2CO	$R_8 = (-k_{8_1}C_{CO} + k_{8_2}C_{CO}^2) \left[\frac{mol}{s}\right], [2]$
C+1/φ O ₂ →(2-2/φ)CO+ (2/φ-1)CO ₂	$R_7 = (-k_7 C_{O2}) \left[\frac{mol}{s}\right], [6]$
	$\phi = p_{O2}^{.21} .0076 e^{3070/T} \left[\frac{1}{kPa}\right], [7]$

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Results US

RUB

Average gas concentration profile for US

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Results AV

Average gas concentration profile for AV

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Results AV

Pressure profile

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Results AV

Temperature profile

ΈΑΤ

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Summary and outlook

RUB

- Quantitative good fit
- Better kinetic data for qualitative better fit
- Sulfur and nitrogen models have to be implemented
- Kinetic data of AV coal are measured

(TG, bubbling bed)

- Volatile content is analyzed by GC
- Solid fraction measurements with capacity probe will follow

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

RUB

Thank you for your attention

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

Literature

RU

[1] Bustamante, F., Enick, R. M., Cugini, A. V., Killmeyer, R. P., Howard, B. H., Rothenberger, K. S., & Shi, S., High-temperature kinetics of the homogeneous reverse water–gas shift reaction (2004). AIChE Journal, 50(5), Pages 1028-1041.

[2] Westbrook, C. K., Dryer, F. L., Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames (1981). Combustion science and technology, 27(1-2), Pages 31-43.

[3] Ducarne, E.D., Dolignier, J.C., Marty, E., Martin, G., Delfosse, L., Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse (1998), Fuel 77, Pages 1399–1410.

[4] Lyon, R. K., Hardy, J. E., Von Holt, W., Oxidation kinetics of wet CO in trace concentrations (1985). Combustion and flame, 61(1), Pages 79-86.

[5] Syamlal, M., Bissett, L. A., METC gasifier advanced simulation (MGAS) model (No. DOE/METC--

92/4108) (1992). USDOE Morgantown Energy Technology Center, WV (United States).

[6] Gungor, A., Eskin, N., Two-dimensional coal combustion modeling of CFB (2008),

International Journal of Thermal Sciences, Volume 47, Issue 2, Pages 157-174.

[7] Tognotti, L., Longwell, J. P., & Sarofim, A. F., The products of the high temperature oxidation of a single char particle in an electrodynamic balance (1991). In Symposium (International) on Combustion, Vol. 23, No. 1, Pages 1207-121

Lehrstuhl für Energieanlagen und Energieprozesstechnik Prof. Dr.-Ing. V. Scherer

FTIR Species

Ethyne Ethene Acetaldehyde Fthane Ethanol Prophet Propene Propane n-butane **Butenine** Furan 1,3-butadiene Isobutene Benzene Toluene Methane Methyl alcohol Carbon monoxide

Carbon dioxide Carbonyl sulfide Carbon disulphide Hydrogen sulphide Hydrogen chloride Hydrogen cyanide Hydrogen fluoride Nitrous oxide Ammonia Nitric oxide Nitrogen dioxide Sulphur dioxide Water Acetic acid Formaldehyde Formic acid