Regulating the crude oil-tochemical process in a multizone fluidized bed reactor S

P

00

MuRE

KCC

PSE

KAUST

CE, ChemE

8

S

8

2

00

a

60

3

a

de

9

Jorge Gascón Professor

Isa Al Aslani

PhD Candidate

Pedro Castaño Associate Professor

Mengmeng Cui Research Scientist

aram

Multiscale Reaction Engineering

GLOBAL INCREMENT IN LIQUIDS DEMAND 2018-2035

	Chemicals	Other Industries	Road transport	Aviation	Marine	Other Transport	Buildings	Power	Total
LPG									
Naphtha									
Motor Gasoline									
Jet/Kerosene	1								
Gas/Diesel									
Fuel Oil									
Other									
Total									

Mohammed Alabdullah, et al., ACS Catal. 10, 15 (2020) 8131–8140

aramco Activite Materials

Composition (wt%)	ACM-100	ACM-101
Kaolin clay	40	20
800-nm SiC additive	-	20
FAU (SiO ₂ /Al ₂ O ₃ = 30)	20	20
P/ZSM-5 (SiO ₂ /Al ₂ O ₃ = 23, P/Al = 0.4)	20	20
Al ₂ O ₃ binder	20	20

Mengmeng Cui, et al., Powder Technol., 2024, 119573

Multiscale **R**eaction

ACC - ADVANCED CATALYTIC

aramco

aramco

Reaction conditions: T = 570 °C, catalyst mass = 6g, liquid feed flow of 0.1 mL min⁻¹ of Arabian light (AL) oil:water (50:50, vol/vol), and an N₂ stream of 100 mL min⁻¹ for 2 h

Catalyst	Total gas yield (wt%)	Ethylene yield (wt%)	Propylene yield (wt%)	Coke yield ^a (wt%)
ACM-101	38.5	3.95	13.44	7.45
E-cat	29.3	1.85	8.26	5.7

a: of the catalyst

Multiscale Reaction

A

Catalyst

Reactor

Multiscale Reaction Engineering

aramco

Prototype

Mohammed Alabdullah, et al., Nature Catal. 4 (2021) 233–241~ Mengmeng Cui, et al., Powder Technol., 2024, 119573

Cold flow

aramco

ACM Multiscale Advanced catalytic materials -

12

Hot flow: hydrodynamics

Simulation conditions: reaction temperature = 773 K, stripping N₂ gas flow = 100 mL min⁻¹ @ STP, reaction zone: U/U_{mf} = 8.92 and stripping zone: U/U_{mf} = 9.09

Mengmeng Cui, et al., Powder Technol., 2024, 119573

90

90

Hot flow: particle circulation

Simulation conditions: reaction temperature = 773 K and stripping N₂ gas flow = 100 mL min⁻¹ @ STP

Mengmeng Cui, et al., Powder Technol., 2024, 119573

Hot flow: heat transfer

Simulation conditions: reaction temperature = 773 K and stripping N₂ gas flow = 100 mL min⁻¹ @ STP

Mengmeng Cui, et al., Powder Technol., 2024, 119573

Multiscale Reaction

Outlines

Workflow

17

Multiscale Reaction

ACM

aramco

Micro-activity testing

- Gas and solid residence times are different
- Good mass balance for heavy feed
- In-situ coke measurement
- Multiple experiments per day

Berty reactor

• Same gas and solid residence time

Mengmeng Cui, et al., ACS Eng. Au (2022), 2, 103-117

Computational fluid dynamics

- Slice model to represent the whole reactor
- Uniform particles assumption by porous media settings
- Rotation by multiple reference frame
- ANSYS Fluent

Computational particle fluid dynamics

- Gas-particle interaction
- CPFD Barracuda VR

Mengmeng Cui, et al., React. Chem. Eng., 2024, Advance Article

Regulating the crude oil-tochemical process in a multizone fluidized bed reactor S

P

00

MuRE

KCC

PSE

KAUST

CE, ChemE

8

S

8

2

60

a

60

3

a

de

9

Jorge Gascón Professor

Isa Al Aslani

PhD Candidate

Pedro Castaño Associate Professor

Mengmeng Cui Research Scientist

aram

Multiscale Reaction Engineering

