

16-GPU Release Guide

September 2013

CPFD Software LLC 10899 Montgomery Blvd. NE, Suite A Albuquerque, NM 87111 +1.505.275.3849 www.cpfd-software.com

C fd COMPUTATIONAL PARTICLE FLUID DYNAMICS

CPFD CONFIDENTIAL

Contents

•	General overview	р. З						
•	GPU parallel acceleration							
•	 Particle-Fluid Physics Blended acceleration model User-defined drag model Agglomeration model 	p. 13 p. 15 p. 22						
•	 Chemistry Conversion terms in chemistry Particle Age factor Shrinking core model 	p. 23 p. 26 p. 28						
•	 GUI Post-processor toggling: GMV / EnSight Plot manager Setup grid keyboard shortcuts 	p. 32 p. 33 p. 35						
•	GMV Output data	p. 36						

CPFD CONFIDENTIAL

General Overview

- This Release Guide presents an overview of the advanced features in Barracuda VR 16-GPU.
- These major features include:
 - Solver efficiency improvements to reduce calculation time
 - Parallel computations on a GPU card 'desktop supercomputer'
 - Blended acceleration model for interpenetration contact force
 - User-defined drag models
 - Support for chemical reaction conversion terms
 - A discrete particle shrinking core model for chemistry
 - A Barracuda plot manager
 - Other GUI and usability improvements

GPU Parallel Acceleration

- Graphics processing unit (GPU) on video cards or dedicated GPU cards are designed for very fast parallel calculations.
- GPU cards are increasingly being added to desktop computers to create "desktop supercomputers" for computational fluid dynamics.
- Barracuda VR 16-GPU contains significant solver efficiency improvements including parallelization on an onboard NVIDIA GPU card (Initially Linux systems only, separate license required).
 - Note that this is a first release of a GPU-enabled solver. Additional speed-ups are anticipated for future releases.
- This results in a significant acceleration of the calculation rate for simulations.

GPU Parallel Acceleration Speed-Up Examples

- CPFD Software has run timing tests on many different types of systems that are typical of a variety of Barracuda applications. The timing results show significant speed-up across all problems.
- It is important to keep the following in mind when discussing problem speed-up statistics:
 - The speed-up is problem-dependent, and a function of model size, computational particle count, and problem physics. For example, a large reacting system will likely have different speed-up than a small isothermal system. Problems with more computational particles may have a greater speedup than similar problems with fewer computational particles. Very small problems may not see any speed-up.
 - The speed-up depends on the speed of both CPU and GPU.
- The plots on the following slides are all based on the same data. The different speedup descriptions are included here because each is useful in different circumstances.

Absolute Run-Time Results

CPFD CONFIDENTIAL

6

Normalized Run-Time Results

7

C for the second second

CPFD CONFIDENTIAL

Speed-up Factor

CPFD CONFIDENTIAL

8

Speed-up Percentage

9

CPFD CONFIDENTIAL

Controlling GPU Device Usage from the Command-Line

- From the command line, GPU acceleration is enabled by default. The user will be prompted to select a GPU when multiple are available
- The -d[0-3] flag can be used to run the calculation on a specific device
 cpfd.x myproject.prj -d2 (will run on CUDA device with id 2)

• The -dauto flag can be used to run the calculation on the first available GPU with enough memory

```
cpfd.x myproject.prj -dauto
```


CPFD CONFIDENTIAL

10

RARRACINA VR

GPU Hardware Considerations

- For the GPU acceleration to be effective, the simulation must fit on the GPU card's on-board memory. For reference, a calculation with 300,000 cells and 7 million particles nearly requires 4 GB of memory for basic calculation (no chemistry, no thermal). If GPU memory is exhausted during a calculation, Barracuda VR 16-GPU performance will likely be significantly hindered.
- Recommended GPU cards: <u>NVIDIA GeForce GTX TITAN</u>, <u>NVIDIA Tesla K20</u>, or better with CUDA Compute Capability of 3.0 and at least 5 GB of GPU RAM.
- Minimum GPU requirements: NVIDIA GPU with CUDA Compute Capability of 2.0 and 4 GB of GPU RAM. NVIDIA driver is required for GPU acceleration. CPFD has prepared an NVIDIA Driver Install Guide to assist customers.
- CPFD offers turn-key workstations fully configured for Barracuda VR 16-GPU with GPU acceleration. Contact <u>sales@cpfd-software.com</u> for more details.

Multiple Calculations and GPUs

- Barracuda VR 16-GPU localizes calculations to a single GPU. i.e., a single calculation will not span multiple GPUs.
- The execution of multiple calculations on separate GPUs is <u>recommended</u> for users on a computer with multiple GPU cards. The increase in calculation time is similar to multiple serial calculations in this case.
- While it is possible to run multiple calculations on the same GPU, it is <u>not recommended</u> as both simulations will be significantly slower.

Blended Acceleration Model for Interpenetration Contact Force

- Barracuda VR 16.0 now includes a blended acceleration model for interpenetration contact force.
- This model better captures restrictions to particle segregation that naturally result from particleparticle contacting in a bed of closely spaced particles.
- The model applies to segregation due to differences in both particle size and particle density.
- This model can be enabled on the **Particles** window.

-Particles							
This section creates the p	particle species that will be u	sed in the calculation.					
Volatiles	- Define released materials	from particle species.					
Particles Species	- Define particles to be use that can contain solids a	ed in the calculation nd released gases.					
Particle-to-particle inter	action]					
Close pack volume fract	tion	0.571					
Maximum momentum redirection from collision							
Blended acceleration	n model for the contact force	0					
Stress model	l advanced options						
Particle-to-wall interacti	ion]					
Normal-to-wall momentu	um retention 0.3						
Tangent-to-wall moment	um retention 0.99						
Diffuse bounce	0						

CPFD CONFIDENTIAL

Use of Blended Acceleration Model

A simulation of particle mixing in a pseudo 2D bed shows a qualitatively better segregation behavior than observed without the model

When blended acceleration model is turned off, excessive segregation is observed

Barracuda VR 16.0 <u>blended acceleration</u> & Koch-Hill-Ladd drag model (user defined, see following slides)

Experimental operation of pseudo 2D bed (Goldschmidt et. al, 2003)

Experimental results: Goldschmidt, M., Link, J., Mellema, S., and Kuipers, J. (2003) Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds. *Powder Technology*, 138:135-139.

14

CPFD CONFIDENTIAL

User Defined Drag Models

- Users can specify their own drag model as a function of **Reynolds number**, fluid and particle volume fractions, particle diameter, Sauter mean diameter, fluid viscosity, relative particle velocity, fluid density, particle density, and particle sphericity.
- The user-defined drag model consists of a custom expression which is multiplied by Stokes drag. Normalizing a drag model by the Stokes drag allows all drag models to be specified accurately and succinctly.

$$\vec{F}_{drag} = \vec{F}_{Stokes} \times f_{custom} \qquad \vec{F}_{Stokes} = 3\pi\mu_f d_p \left(\vec{u}_p - \vec{u}_f\right)$$
User-defined
expression

- The user-defined multiplier is a dimensionless expression that can be as complex as needed and may contain variables, constants, functions, and if-statements.
- Both System and User-defined drag models are optimized to take advantage of GPU parallelization.

Drag Model Expression Input

• Available functions

• Available Variables

- ABS(val1)
- COS(val1)
- EXP(val1)
- IF(condExpr, valTrue, valFalse)
- LN(val1)
- LOG(val1)
- MAX(val1, val2)
- MIN(val1, val2)
- SIN(val1)

- Re: Reynold's number volfracF: fluid volume fraction volfracP: particle volume fraction sphericityP: particle sphericity densityP: particle density densityF: fluid density viscF: fluid viscosity dVelPF: magnitude of particle velocity relative to fluid velocity
- Available Operators

 + * / ^
 < > <= >= ==
 && ||

BARRACUDA VR°

- IF statements are written in a format similar to that used in Microsoft[®] Excel: IF(conditional expression, value if true, value if false)
- For example, IF statement is used to create a Wen-Yu drag model expression: IF(Re<1000,1+0.15*Re^0.687,0.44*Re/24)*volfracF^-2.65

CPFD CONFIDENTIAL

Managing Drag Models

- Drag model manager is a new item in the GUI tree, which allows the user to:
 - View built-in "System" drag models
 - Create user-defined drag models
- As in previous versions of Barracuda, drag models are applied to a particle species in the **Particle Species** window.
- "System" drag models can be copied and then edited as user-defined drag models. This provides a convenient way to define a custom drag model that is based on an existing "System" drag model.

<u>File S</u> etup <u>R</u> un <u>G</u> raphics :	and Oi	utput	<u>P</u> ost-processing <u>H</u> elp						
🕑 🌛 😭 🗃 📚	0	:	🖈 🚺 🔇 💋 🖿	#					
Barracuda VR									
🋬 Setup Grid			Name	Source	Description				
Global Settings		1	Constant	System	Constant drag model				
Particles ■ Orag Models		2	Stokes	System	Stokes drag model				
- 📀 Volatiles - 뤚 Particle Species		3	Wen-Yu	System	Wen-Yu drag model				
Initial Conditions		4	Ergun	System	Ergun drag model				
Boundary Conditions	5				5	WenYu-Ergun	System	WenYu-Ergun blended drag model	
Pressure BCs		6	Turton-Levenspiel	System	Turton-Levenspiel drag model				
- Thermal Wall BCs - Passive Scalar BCs		7	Richardson-Davidson-Harrison	System	Richardson-Davidson-Harrison drag model				
Liquid Injection BCs		8	Haider-Levenspiel	System	Haider-Levenspiel drag model				
Chemistry		9	EMMS1	System	EMMS1 drag model				
∛∂ Reactions		10	Nonspherical-Ganser	System	Nonspherical-Ganser drag model				
Time Controls		11	Nonspherical-Haider-Levenspiel	System	Nonspherical-Haider-Levenspiel drag model				
Data Output Image: Specify user-defined drag models here. Image: Specify user-defined drag models here.									
- A Transient Data			Add	Ed	lit Copy Delete				
Prev A Vext									

CPFD CONFIDENTIAL

Adding Drag Models

- Users may define their own drag model by clicking Add, which displays the drag model editor window.
- This dialog provides the interface for creating a custom drag model.

<u>File</u> <u>S</u> etup <u>R</u> un <u>G</u> raphics and Output	<u>P</u> ost-processing <u>H</u> elp	
🙆 🌛 😭 🔚 📚 🏟 📫	🔹 🚺 🕹 🚺 🛋	#
	ag Model Manager	
Barracuda VR	Name	Saurce Description
Global Settings	Hame	Beschption
💮 Base Materials 🕴 🕴 1	Constant	System Constant drag model
Period Particles	Stokes	System Stokes drag model
Volatiles	Wen-Yu	System Wen-Yu drag model
Initial Conditions	C	Custom Frank dan madal
- 🎊 Fluid ICs	Ergun	System Ergun drag model
••• Particle ICs 5	WenYu-Ergun	System WenYu-Ergun blended drag model
🗧 🔟 Boundary Conditions 📰 📗 —	-	
Flow BCs	Turton-Levenspiel	System Turton-Levenspiel drag model
Passive Scalar BCs	Richardson-Davidson-Harrison	System Richardson-Davidson-Harrison drag model
Liquid Injection BCs	Haider-Levenspiel	System Haider-Levenspiel drag model
Chemistry 9	EMMS1	Syst 🦣 😳 Drag Model Editor 2 🛛 🛇
√s Reactions 10	Nonspherical-Ganser	Syst Name: Comment:
X Numerics	Negenbericel Heider Levenegiel	Constants:
Dete Output	Nonspherical-Haider-Levenspiel	Syst Name Value
GMV Output Options		
-Σ™ Average Data Spe	ecify user-defined drag models he	re.
2D Plot Data		
	Add	
💠 Prev 🛛 🛧 😽 🕹 Next		Add Row Row Switch To Text Entry
		Drag Model Definition
		f _{custom} ():
		$F_{drag}=3\pi\mu d_{\rho}(u_{t}-u_{s})f_{custom}()$
		- Model Tools
		Functions: ABS(val1) Variables: densityF Operators: +
		Check Model OK OCancel

CPFD CONFIDENTIAL

Drag Model Editor Window

- A new drag model must be given an unique name, which will be used to apply the model to a particle species.
- Constants can be defined and used in the drag model expression.
- The drag model expression is entered in the f_{custom}() field and once complete can be verified by clicking on Check Model.

•	4	\odot)	Drag Model Editor 🛛 🖉 👁 🗞						
-	N	am	ne: Hill_Koch_L	.add Comment: Hill, Koch, Ladd model						
	ſ	Co	nstants:							
			Name	Value						
		1	а	0.0673						
		2	b	0.212						
		3	с	0.0232						
		÷	Add Row 🗕	Remove Row						
	_	Dr	ag Model Defini	ition						
	1	f _{cu}	stom():							
	0.5*Re*volfracF^2*(a+b*volfracP+c/volfracF^5)+ IF(volfracF<0.6,10*volfracP/volfracF, volfracF^2*(1+2.1213*volfracP^0.5+2.1094*volfracP*ln(volfracP+16.14*volfracP)/ (1+0.681*volfracP-8.48*volfracP^2+8.16*volfracP^3)))									
	$F_{drag}=3\pi\mu d_p(u_f-u_s)f_{custom}$									
	Model Tools									
		Fur	nctions: ABS(va	ral1) Variables: densityF Operators: +						
(٩	1	Check Model	€ Cancel						

New Particle Species Editor

• Barracuda VR 16.0 contains an improved particle species dialog.

<u>F</u> ile View <u>S</u> etup <u>R</u> un <u>G</u>	praphics and Output Post-processing Help	
0 0 🖻 🗁 😁	🐵 📫 🔹 🌠 🖉 🖼 🛱	
nono Project Tree nono 🗗 🗙 🗍	Datiala Crasica Definitiona	
📔 Barracuda VR 📃	Particle Species Delinitions	
🐂 🍃 Setup Grid	Species-ID Materials Min Radius Max Radius Sphericity Comment	
🛛 🌎 Global Settings		
💮 Base Materials	Desting Departies	
🖻 🚥 Particles	Particle Species Properties	
🛛 ┥ Drag Models		
🛛 🔫 Volatiles		
🔤 💑 Particle Spec	Comment: Metallurgical grade silicon Model Name: Pill_Koch_Ladd	
🖻 🕨 Initial Conditions		161
Revealed Fluid ICs	Materials: Applied Solid/Volatile Materials Name Link to Default	value
Particle ICs	Predefined PSD:	
🖶 📑 Boundary Con		
- Pressure BCs	b 🖹 Linked 0.212	
Thermal Wall BCs	c 🕅 Linked 0.0232	
- Passive Scalar BCs	Minimum Maximum	
Liquid Injection BCs	Radius: 7.5e-05 0.00015 m	
Injection BCs		
🖻 👗 Chemistry	Radius Filename: Multiplier: 1	
Rate Coefficie		
∛∂" Reactions	Agglomeration	
🛛 🔀 Numerics	Sphericity: 1 Emissivity: 1 Second	
🛛 🝼 Time Controls 🚽		
🖻 🚢 Data Output	Effective Radius Filename:	
- 🔃 Flux Planes		Edit 🕞
GMV Output	Apply Cancel	
Ση Average Data		
2D Plot Data		
Wall Fracion	Add Edit Conv Delate	

CPFD CONFIDENTIAL

BARRACUDA VR[®]

Applying a Drag Model

- Drag models are applied to individual particle species and drag model constants can be viewed and edited.
- Any changes to constants ۲ apply only to the current _____ particle species.
- Definitions of constants • can be viewed in the drag model manager.
- Agglomeration models can ۲ be applied to any drag model including user defined models.

Particle Specie	2 × 0 ×	
Species-ID: 1 Comment: Metallurgical grade silicon	Drag Model Model Name: Rill_Koch_Lad	d
Materials: Applied Solid/Volatile Materials	Name Link To Default	Value
Predefined PSD:	a 🗷 Linked 0.0673	
	b 🔀 Linked 0.212	
Minimum Maximum Radius: 7.5e-05 0.00015 m	c 🗷 Linked 0.0232	
Radius Filename:	Multiplier: 1	
Sphericity: 1 Emissivity: 1	Agglomeration Radius Cut Point: 1.8e-05 Effective Radius Filename:	
Apply Cancel		Edit

CPFD CONFIDENTIAL

Applying Agglomeration Model

- An agglomeration model can be applied to particle species for **any** drag model, including user defined models.
- Interface on particle species dialog allows:
 - Agglomeration to be enabled
 - Specification of radius cut point
 - Creation or editing of an effective radius file

Particle Specie	es Properties	2 🛇 🛇			
Species-ID: 1 Comment: Metallurgical grade silicon	Drag Model Model Name: <u>Hill_Ko</u>	ich_Ladd			
Materials: Applied Solid/Volatile Materials	Name Link To Default	Value			
Predefined PSD:	a 🗶 Linked	0.0673			
	b 🗶 Linked	0.212			
Minimum Maximum	c 🗶 Linked	0.0232			
Radius: 7.5e-05 0.00015 m					
Radius Filename:	Multiplier: 1				
Edit 😭	Agglomeration —				
Sphericity: 1 Emissivity: 1	Radius Cut Point: 1.8e-05				
	Effective Radius Filename	et			
Apply Cancel		edit 📔			

BARRACUDA VR[®]

Conversion Terms in Chemistry

- Barracuda VR 16 now includes new solids dependence terms for ease of use when adding chemical reactions based on conversion.
- m₀ is the initial mass of a particle *or* particle component.
- **m** is the current mass of a particle or particle component.
- New solids dependence terms are included in **Solids Dependence** Dialog:
 - m/m0
 - 1- m/m0
 - m0

Name: k12								
Type: Arrhenius Chem Rate 😫								
Coefficient is for reaction type: 🔘 Volume-Average 🛛 💿 Discrete								
Equati	ion: c₀ T ^{c1} p ^{c2} ρ _f ^{ci}	³ Θ _f ^{c4} (Np/Vol	l) ^{c5} e ^{-E/T+E0} {t	type₅				
(12 =	8.605 e ^{-3067.12/T+0}	⁾ (m/m0) _{Fe0} ^{0.6}	⁶⁷ (m0) _{FeO} 1					
–Values–								
$c_0 =$	8.605]						
$c_1 =$	0	Temperature unit:	к	\$				
c ₂ =	0	Pressure unit:	Ра	\$				
c3 =	0	Density unit:	kg/m^3	\$				
c4 =	0]						
c5 =	0							
E =	3067.12							
E0 =	0	Ĩ						
		Diameter unit:	m	\$				
type, =	Solids Dependence	Mass unit:	kg	\$				
	bependence	Area unit:	m^2	\$				
Tampar	atura Waighting	2						
- Temper Fluid wei	abting factor: 0.50							
				U				
Particle w	eighting factor: 0.50	T						
- Comme	nt							
Oxidatio	n rate coefficient, Chemica	I Looping Combustic	n					

CPFD CONFIDENTIAL

Conversion Terms in Chemistry

CPFD CONFIDENTIAL

Using Conversion Terms

• Kinetics of ilmenite oxidation reactions use conversion (X) in definition:

$$4\text{FeO} + \text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$$
$$\frac{dX_o}{dt} = (1 - X_o)^{2/3} \frac{3bk_0}{\rho_m r_g} \exp(-E/RT)[\text{O}_2] \text{ where } X_o = 1 - \frac{m_{\text{FeO}}}{m_{0,\text{FeO}}}$$

 Substituting conversion definition and rearranging, yields a form that is readily entered in Barracuda VR 16.0 using new solids terms *m0* and *m/m0*

$$4\text{FeO} + \text{O}_{2} \rightarrow 2\text{Fe}_{2}\text{O}_{3}$$

$$\frac{d \, m_{\text{FeO}}}{dt} = m_{0,\text{FeO}} \left(\frac{m_{\text{FeO}}}{m_{0,\text{FeO}}}\right)^{2/3} \frac{3bk_{0}}{\rho_{m}r_{g}} \exp(-E/RT)[\text{O}_{2}]$$
Rate coefficient

CPFD CONFIDENTIAL

25

Particle Age Factor

- Models may require the feed or initialization of particles that are have already undergone a reaction. Therefore, the composition used for particle initialization would be *different* from the initial particle composition used for calculating conversion in reactions.
- Barracuda VR 16.0 now contains an **Age Factor** in the particle species dialog to relate the *feed* mass of particle components to the *initial* mass of particle components:

Initial mass of a component = Age factor X Feed mass of a component

- **Feed composition**: the composition of a particle when it enters the model domain.
- **Initial composition**: the composition of a particle when it is considered new or "fresh" for reaction chemistry calculations.

Particle Age Factor

Add Materials using the b	Applied material 🛛 🗙	
ID ♥ Name Sta 000 Ilmenite S	Project material list	
002 Fe2O3 S	Material State	
	C S	
	CO2_SOLID S	
	Fe2O3 S	
	FeO S	
	MOISTURE S	
	ORGANICS S	
Add		
– Overall particle density		Age factor can have
Automatically calcu	Mass fraction amount: 0.306	values in the range.
		0 < Age Factor <= 1
🕴 Volatiles Manager	Material Properties Library	
	Apply Cancel	
MPUTATIONAL		

റ്റ

Barracuda Shrinking Core Reaction model

- Barracuda VR 16.0 contains a new Shrinking Core Model for more accurate modeling of some types of reactions. For example, analysis of partially reacted carbon particles show an ash region surrounding an unreacted core (Yagi and Kunii, 1955; Levenspiel, 1972).
- The Barracuda shrinking-core-model is on a per particle basis and assumes that the solid material in a particle reacts in the presence of a gas species. The rate of reaction is controlled by :
 - the first-order reaction rate;
 - the transport of the gas through the non-reacting material to the core; and
 - the transport of gas through the boundary layer

BARRACUDA VR°

• Each particle has its own history and a "fresh" particle will have more reaction than an "old" particle.

Levenspiel, 0., 1972, Chemical Reaction Engineering, John Wiley & Sons, New York.

Yagi, S., Kunii, D., 1955. Studies on combustion of carbon particles in flames and fluidized beds. In: Fifth Symposium (International) on Combustion, Reinhold, New York, pp. 231–244

Barracuda Shrinking Core Reaction model

• For the shrinking core model, the gas concentration at the reacting core is

$$\rho_c = \frac{\rho_{\infty}}{k_R \left(\frac{1}{k_R} + \frac{1}{k_D} + \frac{1}{k_B}\right)}$$

$$k_D = \frac{4\pi D_m}{r_p^{-1} - r_c^{-1}} \qquad k_B = h_m A_p$$

- ho_c The gas mass concentration at the reacting solid core
- ho_{∞} The gas mass concentration in the bulk gas
- k_R The first order reaction rate
- *k*_{*B*} Boundary layer mass transfer coefficient
- k_D Diffusion through non-reacting material

CPFD CONFIDENTIAL

Barracuda Shrinking Core Reaction model

• Parameters in the shrinking core model are

$$r_{c} = \left[\frac{3m_{s}}{4\pi\overline{\rho}_{s}}\right]^{1/3} \qquad Re = \frac{2r_{p}\rho\left|u_{p}-u_{f}\right|}{\mu}$$

$$\frac{h_m 2r_p}{D_{m,g}} = \text{Sh} = 2 + 0.6\text{Re}^{1/2}\text{Sc}^{1/3} \qquad Sc = \frac{\mu_f}{\rho_f D_{m,g}}$$

- *r*_c Radius of reacting core
- r_p Radius of particle
- ρ_c Density of reacting material
- m_s Mass of reacting solid in particle
- D_m Mass diffusion coefficient for non-reacting material
- *Sh* Sherwood number
- h_m Mass transfer coefficient through boundary layer
- A_p Surface area of particle

BARRACUDA VR[®]

for computational PARTICLE FLUID DYNAMICS

CPFD CONFIDENTIAL

Using the Shrinking Core Model

- The *Shrinking Core Model* can be enabled for any <u>discrete particle</u> reaction in the reactions window.
- The diffusion coefficient of the gas through the <u>non-reacting</u> solid must be specified.
- Strictly speaking, the shrinking core analytic solution is for a first order reaction. However, Barracuda does not enforce a first order reaction, and the shrinking core model may be used with any reaction order. It is the user's responsibility to verify that the model is appropriate in such cases.

Equation Editor								
Directions: Choose Equation Units for this reaction.	Equation Units							
Enter a rate equation in the blank provided.	Reaction rate units: mol/s							
Use Add Chemical and Add Coefficient to insert either into	Gas species units: mol/m3							
the equation. Press the Check button to verify equation is valid.								
Expected Power Law rate equation format: $c0 (k + k) [mateExample of valid Power Law rate equation format:1.2 (1.5 * k0 - 3 * kExample of invalid Power Law rate equation format:(k0 * k1) [H2O]^1Example of LH expected format:(c0 k[] + c1 k[] + Example of groups of rates:(c0 k0 [O2] - c1 (0.))$	erial1]^power [material2]^power + c1 1) [H2O]^1.5 .5 Coefficients cannot be multiplied. +)/(1 + c2 k [] + c3 k [] +)^power .5k1-k2))^1.5 (c1(k3) [CO]^0.5[O2])^-1							
Enter a rate equation for the reaction in either Power Law or Langmuir-Hinshelwood for	<i>m</i> :							
Check Add Discrete Coefficient Add Chemical	Coefficients Manager							
Participating reactions-]							
ID Type Rate Equation 00 Discrete d[FeO(S)]/dt = -2 d[Fe2O3(S)]/dt 01 Discrete d[O2(G)]/dt = -0.5 d[Fe2O3(S)]/dt								
Add Edit Copy	Delete							
Shrinking Core Model								
Diffusion Coefficient 0.0001	m^2/s ♦							
Comment								
]							
Apply	Cancel							

CPFD CONFIDENTIAL

Post-processor Toggling

- Toggling between using GMV or Ensight for postprocessing is done from the **Post-Run** window.
- Alternatively, the shortcut bar contains a postprocessor toggle control as well.

CPFD CONFIDENTIAL

BARRACUDA VR[®]

Plot Manager

• The plot manager is a new item in the GUI tree, which provides a convenient interface for creating and managing 2D plots.

BARRACUDA VR[®]

Plot Manager

0 9			Plot Op	erations				$\odot \odot \odot$	\otimes
Name Title Subtitle Legend	System mass Particle mass in system biomass On Off	1			X-Axis Title Y-Axis Title Note: Imag and "Plot" Imaga Nar	Time (s) Mass (kg) Image of Plot ge will be updated d operation me: bed_mass	uring eacn "M	iake image"	.eps
1 hist	File Preview X Y tory.log 1 14 d Remove	Line Name	Color Red heck Data	Long	Style Dashed - Make	Width Small-Medium 🗸 Image Plot	None	ymbol	↓ ancel
A sing multip given colum	le plot can ha le sources of by the file nai ns	ave data me and				M au pl	ake im utomation ot to the an .ep	age wi cally sa e name os file	ill ave the e given

CPFD CONFIDENTIAL

C for to some the solution of the solution of

34

Setup Grid Keyboard Shortcuts

- In Barracuda VR 16.0, quickly switch between gridding tasks using keyboard shortcuts:
 - Modify X = "x"
 - Modify Y = "y"
 - Modify Z = "z"
 - Delete = "d"
 - Move = "m"
 - Use "Escape" to deselect the current mode

BARRACUDA VR[®]

CPFD CONFIDENTIAL

New GMV Output Data

Lagrangian variables for Unique particle ID and Drag have been added

General Mesh View Data Output Options	;	
Please select Eulerian and Lagrangian data for export to the General Mesh Viewer (GMV). Only data selected here can be viewed during post-processing. Values inside parenthesis are the field names of the variables within GMV.		
Output file interval Plot interval: 0.1 s	Number of files produced using cur	rent end time of 0s : 1
– Eulerian Output Data		
🕱 Particle volume fraction (p-volFra)	Particle bulk density (p-dens)	dp/dx (dp/dx)
🕱 Fluid velocity (U, V, W)	Turbulent viscosity (ViscTurb)	dp/dy (dp/dy)
Particle velocity (P_[xyz]Vel)	CFL (CFL)	dp/dz (dp/dz)
🕱 Pressure (Pressure)	Particle species (Species)	Solid mass flux (P_[xyz]Mass)
Dynamic pressure (DynPres)	Fluid temperature (f-Temp)	Fluid mass flux (F_[xyz]Mass)
Fluid density (f-dens)	Particle temperature (p-Temp)	 Wall heat transfer (wallHeat)
Cell indices (i, j, k)	Cell volume (cellVol)	
-Lagrangian Output Data		
🕱 Particle volume fraction (VolFrac)	Particle material (Material)	Velocity (vel[xyz])
🗙 Particle speed (Speed)	Particle density (Density)	Residence time (ResTime)
Particle radius in microns (rad)	Particle species (Species)	Residence time by species (ResTime##)
🗌 Constant color (Particle)	🗌 Visual (Visual)	Temperature (Temperat)
Drag) (Unique particle ID	
-Gas Species		Options
 Mass fraction (<species>.mf)</species> 	○ Mole fraction (<species>.nf)</species>	Compress graphics output (not common)
O Mass concentration (<species>.mc)</species>	O Mole concentration (<species>.nc)</species>	Generate predefined GMV attribute files

CPFD CONFIDENTIAL

Installation and Support

Please do not hesitate to email or call with installation and support issues

Email: support@cpfd-software.com Phone: +1-505-275-3849

Hone. 1 303 273 3043

Coming soon! All new customer support site at <u>www.cpfd-software.com</u> including:

- Knowledge base articles
- Barracuda VR Users Manual
- Downloads