
Barracuda Virtual Reactor, Barracuda VR, Barracuda and CPFD are registered trademarks of CPFD Software, LLC

Wednesday Gasifier Training Problem
Part 2: Advanced Post-Processing

February 2018

CPFD Software LLC
10899 Montgomery Blvd. NE, Suite A

Albuquerque, NM 87111
+1.505.275.3849

www.cpfd-software.com

Training Objectives

• This post-processing training introduces several advanced techniques that are useful in monitoring
and analyzing Barracuda simulations. We will use the Wednesday gasifier as the basis for
demonstrating these techniques.

• The terminal (aka command-line, or shell) is introduced. Many advanced operations can be done
using the terminal.

• Scripts are introduced, using Python to define plots that can be used to easily monitor ongoing
simulations.

• MAKE_ANIMATIONS.sh scripts are introduced, using BATCHMOVIE.sh to automate the creation of
animations.

• Combining multiple views of a simulation into a single animation

• Adding a logo to an animation

2

Data File Header Sections

• In the discussions that follow, we will be plotting data from Barracuda output files. It is important
to understand the header sections of these files in order to find the correct columns for plotting.

• When plotting with Plot Manager, use the Preview button to see the header sections.

• When writing custom plotting scripts, use the Post-Run  View Log Files to open text-based
output files and inspect their header section information. Notice that by default only files ending in
*.log and *.otp are listed. Other types of files can be viewed by using the Files of type dropdown.

• All text-based Barracuda output files have headers in Standard File Format (SFF), similar to the
format used for *.sff input files at boundary conditions.

#@ 1 "Time" "s“

#@ 2 "dt" "s“

#@ 3 "Volume iterations" "“

#@ 4 "Volume error" "“

#@ 5 "u iterations" "“

#@ 6 "u error" "“

#@ 7 "v iterations" "“

#@ 8 "v error" "“

#@ 9 "w iterations" "“

... and so on ...

• Base on a review of the header information for an output file, you will be able to determine which
column contains the data you wish to plot.

3

Plot Manager Review

• Whenever possible, use Plot Manager. For many simulation monitoring and analysis tasks, Plot
Manager is the easiest way to quickly visualize data from Barracuda VR’s text-based output files.

• Plots defined in Plot Manager are automatically stored within the Barracuda VR project file, making
them easily accessible for future use.

4

Total Particle Mass in System

• A common parameter that you should monitor during
a Barracuda VR simulation is the total particle mass in
the system.

• Most systems have a known mass of particles at
steady state, and your simulation should match that
known value.

• The total particle mass is recorded in history.log with
a column name of “particle mass”.

• Create a plot of the total system particle mass using
Plot Manager.

5

Time-Integrated Particle Entrainment

• The mass of particles entrained from a fluidized bed is
often of interest. Barracuda VR records particle mass flow
rate, as well as time-integrated particle mass, at flux
planes.

• Create a plot of the time-integrated particle mass passing
through each of the four cyclones using Plot Manager.
Tip: from each Pressure BC’s flux plane, plot data from the
"Time integrated particle mass of all species“ column

6

Interpreting Time-Integrated Data

• It is important to have a clear understanding
of time-integrated mass data, since many
Barracuda files utilize this concept.

• In the plot at right, we are seeing curves
that represent the total particle mass that
has passed through each of the four flux
planes since the beginning of the
simulation.

• The time-integrated mass is negative due to
the sign convention in Barracuda VR.

• For boundary condition flux planes (e.g.,
Pressure BCs and Flow BCs), flow into the
system is considered positive, while flow
out of the system is negative.

• For internal flux planes, the sign convention
is based on axis directions. A z-direction
flux plane reports positive values for flow in
the positive z-direction, and negative
values for negative z-direction flows.

• By calculating the slope of each time-
integrated line, you can determine the
entrainment rate in units of (kg/s).

7

Outlet Gas Composition

• For chemically reacting systems, the
gas composition at system outlets is
often of interest.

• In Barracuda VR, a flux plane will
record gas composition information
according to the option selected in
the drop-down box labeled Gas
species flux plane behavior.

• The gas composition flux plane file
will have the same name as the
normal flux plane file, with a suffix
of _gasSpc000_006 (the numbers
at the end are determined by the
number of gas species used in the
project).

• For the Wednesday Gasifier
example, we chose Mass Time
Cumulative as the gas composition
format at each of the four cyclone
Pressure BCs.

• Using Plot Manager, create a plot of
the gas composition at the Pressure
BC of Cyclone 1.

8

A quick way to create rows 2 through 7 is to define

row 1, and then use the “Copy” button. You can

then change the “Y” and “Color” items for rows 2

through 7.

Interpretation of Gas Composition Plot

• This plot is showing time-integrated
data, not mass flow rate. Be careful to
note the difference in meaning.

• As noted earlier, if you want to get
the flow rate of each gas species,
calculate the slope of each time-
integrated line.

• The sign convention at Boundary
Condition flux planes is:

• In-flow = positive

• Out-flow = negative

• The gas composition plot can be used
to help judge when the system reaches
pseudo-steady state. Once the time-
integrated lines achieve constant
slope, the gas composition at the
outlet is no longer changing.

9

Plot Total Particle Mass in System with a Script

• Previously in this presentation, you made a plot of the total particle mass using Plot Manager.
Here, we will plot the same data using a script.

• As noted previously, in general you should prefer using Plot Manager whenever possible. This example is
meant to be instructive so that you can see how the same plot can be made using a script.

• We will be using a program called Jupyter notebook. It is an interactive computational environment
which uses the Python scripting language to create plots.

• If Jupyter notebook is not already installed on your system, see this Support Site post for instructions on
downloading and installing the Anaconda Python distribution:
http://cpfd-software.com/customer-support/knowledge-base/installing-the-anaconda-python-distribution

• When plotting data with Jupyter notebook (or any scripting method), it is convenient to start with a
template, so you don’t have to type repetitive parts of the plotting commands. Template scripts are
included in the training directory.

In Linux:
/home/training/barracuda_training/scripts

In Windows:
C:\training\scripts

• Using a file browser or command-line terminal, copy the template script
jupyter_notebook_template.ipynb into your project directory.

10

http://cpfd-software.com/customer-support/knowledge-base/installing-the-anaconda-python-distribution

Opening a Command-Line Terminal

• The Barracuda VR GUI has several built-in
ways to open a command-line terminal.

• A shortcut button is always available on the
top shortcut button bar.

• The Open Terminal button is available in the
Post-Run section of the GUI.

• There is a menu item: Post-processing 
Open Terminal

• When any of these is used, a new terminal is
opened in the currently opened project’s
working directory.

11

Back to Making that Plot…

• Using a file browser or command-line terminal, copy the template script
jupyter_notebook_template.ipynb into your Wednesday Gasifier my_setup directory.

• Open a terminal through the Barracuda GUI.

• Type the command seen below to open the Jupyter notebook template.

• This will open the template in your web browser.

12

Jupyter Notebook – System Mass plot

• Rename the notebook with a name
of your choice. Click on the file
name to enter a new notebook
name.

• A Jupyter notebook is set up with a
top cell of information that is
necessary to run and create plots.

• The second cell contains the
template coding to create a plot.
Cells can be added in order to
create additional plots.

• In order to “run” the notebook, you
can click in each cell (starting with
the first cell and moving down) and
Ctrl-Enter. Or to run the whole
notebook at one time, use the top
menu bar CellRun All.

• Cells should generally be run in
order from top to bottom. This
will ensure that all functions and
variables are properly defined.

13

Jupyter Notebook – System Mass plot

• Text hightlighted in yellow needs to
be replaced with relevant data for
this system mass plot.

• Start with giving the plot a file
name. Use underscores (instead of
spaces) in all file names.

• Specify the name of the input data
file. Tab completion will work in the
notebook.

• Type in the correct numbers for the
X column and Y column data.

• Specify plot title and X and Y axis
labels.

• Once all data is input, Ctrl-Enter in
each cell or CellRun All to run the
code.

14

Jupyter Notebook – System Mass plot

15

After the cell has
been run, changes
can be made to the
cell and run again.

The first cell only
needs to be run when
the notebook has first
been opened or when
any new modules are
added.

Remember to save!

Jupyter Notebook – Time-integrated Particle
Entrainment with Summation

• Earlier in this presentation, we
plotted the time-integrated particle
mass leaving through the four
cyclone Pressure BC flux planes. We
can make the same plot from the
notebook, and furthermore we can
perform a summation of the four
cyclones to include in the plot.

• Copy the system mass cell and paste
it in a new cell below that cell. Click
in the system mass cell, then:

• EditCopy Cells

• EditPaste Cells Below

• Replace name for plot, data file
input, X and Y column, and plot
title.

• Add a label and uncomment the
legend line.

16

Jupyter Notebook – Time-integrated Particle
Entrainment with Summation

• In order to input the data for all
four cyclones, we will need to move
the lines around in the script.

• First, cut the input data file line and
paste it as shown.

• Next, copy and paste the 3-line
block of code three times. Then
change the data file name and label
to include all four cyclones.

• Next, we will add a line for the
summation of all four cyclone’s
entrainment.

17

Jupyter Notebook – Time-integrated Particle
Entrainment with Summation

• To sum the mass for all four
cyclones, we will have to change the
name for the Y value in each plot.
We can easily do this by changing
cyclone 1 y to y1, cyclone 2 y to y2,
and so on.

• Define the summation equation.

• Add a new “ax.plot” command to
include the calculated summation
line to the plot.

• CrtlEnter to run the cell and
create the plot

18

Jupyter Notebook – Time-integrated Particle
Entrainment with Summation

19

Jupyter Notebook – Compare Runtimes of Two Runs

• It is often useful to quantify how fast a
simulation is running, or to compare two
runs to see their relative runtimes. In our
case, it is interesting to compare the
runtimes of the Tuesday and Wednesday
gasifiers. This will give us an idea of the
combined impact of (1) refining the grid,
and (2) adding thermal and chemistry
calculations.

• There are various ways to talk about
runtime. For this example we will
make a plot of the number of seconds
simulated versus the number of hours
of real time required. The cumulative
real time spent by the solver is
recorded in the history.log file under
the column “CPU (s)”. This column will
be a different number for the two
simulations due to thermal and
chemistry changes in history.log.

• Create a new cell below the entrainment
plot cell. InsertInsert Cell Below

• Copy and Paste the text from the system
mass plot cell into the new cell.

20

For the runtime comparison plot, the data file line and
the X and Y column lines have to be moved because of
differences between the two simulations. See next
slide for details.

Jupyter Notebook – Compare Runtimes of Two Runs

21

Be sure to
uncomment the
legend line in order
to see the labels for
each line.

In order to show the
x-axis in units of
hours, we have to
convert the history.log
data from seconds to
hours.

The file name for
history.log for Tuesday
gasifier, must have the
correct path.

Interpreting the Runtime Plot

• One important new concept is that the first data file we read is actually in a different directory. The path
../../3_Tuesday_Gasifier/my_setup/history.log tells the Jupyter notebook exactly
which file we want.

• Another new idea is using mathematical operations on a set, and assigning the results back to that same
set. The command x=x/3600 changes the time scale of the x-axis from seconds (which is the default
unit in the history.log file) to hours.

• An observation based on the plot:

• We see that the Tuesday gasifier
runs much faster than the Wednesday
gasifier. It reached the 100 s end-time
in a few hours, while the Wednesday
gasifier took almost 24 hours to reach
100 s.

• It is important to realize the relative costs
of the choices made during project setup.

• Refining the grid can give more accurate
answers, but increases the runtime.

• Chemistry and thermal calculations are
often necessary for realistic simulations,
but they also add computational cost.

22

Determining the slope of Runtime plot

• To speak of the runtime data in terms of a
rate of simulation seconds per hour of real
time, we can use linear regression to
calculate the slopes of the runtime lines.

• Add the highlighted line to the top cell and
CrtlEnter in that cell. This will import a
module which will allows us to perform the
regression on the lines.

• Add the following lines (remember: copy and
paste is your friend).

• The first line filters to include only the data
equal to or after 80 seconds. You can change
this number to see how the line regression
changes as more of the data is included.

• The second line says that you want a linear
regression on the x and y data in the time
range specified in the previous line.

• The third line tells the notebook to print out
the slope calculated by the linear regression,
with some text before and after the
numbers.

• After adding the lines, CrtlEnter

23

Interpreting the Runtime Plot

• The output from the notebook will now include the slope of each line with units of simulated
seconds per hour of real time. Remember that this slope is only for 80-100s.

24

How to Close the Jupyter notebook

• Once you are finished using the Jupyter notebook, close it by following these steps:

1. Save the notebook, and close the browser tab

2. In the command terminal that was originally used to start the notebook, type Ctrl-C twice.

25

GMV Attribute Files

• GMV uses attribute files to store view settings.

• Open a GMV window with particles colored by
volume fraction.

• Tip: whenever possible, start with the shortcut
buttons in the Barracuda GUI. In this case use Post-
Run  Particle Volume Fraction.

• Resize the GMV window so that the view “fits” the
geometry. For the Wednesday Gasifier geometry, a
window that is tall and not too wide works well.

• Save an attribute file of the view with a name such
as “particles_volfrac.attr”

• Close GMV and open a command-line terminal in
your current project directory for the next step in
creating an animation from the attribute file just
saved.

26

Opening a Command-Line Terminal

• The Barracuda VR GUI has several built-in
ways to open a command-line terminal.

• A shortcut button is always available on the
top shortcut button bar.

• The Open Terminal button is available in the
Post-Run section of the GUI.

• There is a menu item: Post-processing 
Open Terminal

• When any of these is used, a new terminal is
opened in the currently opened project’s
working directory.

• Depending on which operating system you
are using, the following terminals will be
opened by default when you use the GUI’s
Open Terminal functionality.

• Linux: xterm

• Windows: cmd

• Tip: On Windows, in order to run some
scripts (*.sh) in this presentation, start an
xterm from the cmd window by simply
typing:

xterm

27

Getting to Know the Terminal

• Depending on whether you are using a native
Linux version of xterm, or the version
included in Cygwin on Windows, the prompt
may look slightly different. However, the
same basic information is usually presented:

• Username

• Machine name

• Current working directory

• A prompt symbol, indicating that the terminal
is ready to accept input

• Tip: xterm supports tab-completion, which
allows you to start typing commands or file
names, then press the Tab key on your
keyboard and the terminal will finish your
command or file name if a match is available.

• Tip: xterm has command history built-in,
which allows you to re-run previous
commands easily. At the prompt, use the Up
arrow key on your keyboard to cycle through
previously typed commands.

28

Using BATCHMOVIE.sh

• BATCHMOVIE.sh is a script that creates animations from GMV files, using attribute files such as the
one we just saved.

• Run BATCHMOVIE.sh with the following command:

BATCHMOVIE.sh particles_volfrac.attr –mp4

• You will see information scrolling in the terminal as each GMV file in the directory is read, and an
image is made based on the attribute file specified.

• The command shown above is the simplest syntax of BATCHMOVIE.sh. It assumes that you want to
create images from all Gmv* files in the current directory. If you do not want to use all Gmv* files,
or if you want to do something else more advanced, see the BATCHMOVIE.sh usage information
that is displayed when you call the script with no arguments:

BATCHMOVIE.sh

• At the end of the process, BATCHMOVIE.sh will create an animation with name <attribute>.mpg
(Linux) or <attribute>.mp4 (Windows) and return control back to the terminal. To play the
animation, use the command:

• Linux - xanim particles_volfrac.mpg

• Windows – play the file with Windows Media player or similar video player

29

Attribute file name

Commands needed in

Windows are highlighted.

Make Several Animations

• Create two more views of the simulation
results. Shown at right are suggestions.

• Tip: remember to start with the built-in
Post-Run shortcut buttons in the
Barracuda VR GUI. These are the easiest
way to open GMV with a view that is
probably close to what you want.

• For each view, save an attribute file.

• Proceed to the next slide to create a
script that makes animations from all of
your available attribute files.

• Tip: It is a good idea to make all of your
GMV windows the same size so that the
side-by-side views are consistent. Use Ctl-
3 Window size to specify a window
size that fits the geometry well and use
that same dimension for each GMV
window.

30

Cells colored by mole fraction of H2,
half-section of vessel using subset.
Attribute filename: cells_H2.nf.attr

Cells colored by fluid temperature,
half-section of vessel using subset.
Attribute filename: cells_f-Temp.attr

MAKE_ANIMATIONS.sh Script

• If you have a long-running simulation, it is useful to combine several BATCHMOVIE.sh calls into a single
script. This way, when you want to update all of the animations, you run just the single script.

• BATCHMOVIE.sh was designed so that it only creates images from GMV files that were not present the last
time it was run. This makes it very efficient at updating animations, since any frames that were previously
created do not have to be made again.

• Linux: Create a new script using a command like this:

gedit MAKE_ANIMATIONS.sh

• Windows: Use Notepad++ to create a text file with the name MAKE_ANIMATIONS.sh (see next slide)

• In the script, put the following commands:

#!/bin/bash

BATCHMOVIE.sh cells_f-Temp.attr -mp4
BATCHMOVIE.sh cells_H2.nf.attr –mp4
BATCHMOVIE.sh particles_volfrac.attr –mp4

• For Linux, do not include the –mp4 after each attribute file name.

• Save the file and close text editor.

• Linux: Make the script executable:

chmod +x MAKE_ANIMATIONS.sh

• Run the script by typing the script name in the terminal and pressing Enter:

MAKE_ANIMATIONS.sh

31

Specifying the filename here creates a new file.

Each line is executed in turn,
so all three animations will be
created when the script
finishes running.

Depending on how many GMV files are in your directory, and how big they
are, the script could take several minutes to run. Even so, it is faster than
using the GMV GUI auto-read feature.

Using Notepad++ for Writing Scripts in Windows

• When using Cygwin on Windows, scripts need to be saved with Unix (LF) line endings. You only
need to perform this step once, the first time you save each script.

32

Right-click, and

choose Unix (LF)

Save after changing

to Unix (LF)

Using MULTIFRAME.tcl to Combine Animations

• Combining several animations into a single animation is very useful, especially when trying to
understand and explain how different aspects of physics, thermal, and chemistry interact.

• MULTIFRAME.tcl is a script that operates on multiple sets of images, combining them into a new set
of images starting with “Montage”.

• Using the three animations that we just created, add to your MAKE_ANIMATIONS.sh script so that it
includes a MULTIFRAME.tcl command and a jpg2mpg (Linux) or a jpg2mp4 (Windows)
command to combine the resulting Montage*jpg files into a final animation.

#!/bin/bash

BATCHMOVIE.sh cells_f-Temp.attr –mp4

BATCHMOVIE.sh cells_H2.nf.attr –mp4

BATCHMOVIE.sh particles_volfrac.attr –mp4

MULTIFRAME.tcl h cells_f-Temp cells_H2.nf particles_volfrac

jpg2mpg Montage*jpg –o wednesday_gasifier_montage.mpg

jpg2mp4 Montage*jpg –o wednesday_gasifier_montage.mp4

• Save, close, and run the script. Play the resulting animation.

33

MULTIFRAME.tcl to Combine Animations - explained

#!/bin/bash

BATCHMOVIE.sh cells_f-Temp.attr –mp4

BATCHMOVIE.sh cells_H2.nf.attr –mp4

BATCHMOVIE.sh particles_volfrac.attr –mp4

MULTIFRAME.tcl h cells_f-Temp cells_H2.nf particles_volfrac

jpg2mpg Montage*jpg –o wednesday_gasifier_montage.mpg

jpg2mp4 Montage*jpg –o wednesday_gasifier_montage.mp4

34

Directories where images are stored.

jpg2mp4 creates an output file named
out.mp4 by default. You can use the –o
flag to specify a different output file
name.

jpg2mpg creates an output file named
out.mpg by default. You can use the –o
flag to specify a different output file
name.

New output file name.

Linux:

Windows:

Adding Logos to Animations

• Adding your company’s logo to an animation can be accomplished using the ADDLOGO.tcl script.

• Modify the MAKE_ANIMATIONS.sh script to add an ADDLOGO.tcl command, as well as another
jpg2mp4 call:

#!/bin/bash

BATCHMOVIE.sh cells_f-Temp.attr –mp4

BATCHMOVIE.sh cells_H2.nf.attr –mp4

BATCHMOVIE.sh particles_volfrac.attr –mp4

MULTIFRAME.tcl h cells_f-Temp cells_H2.nf particles_volfrac

jpg2mpg Montage*jpg –o wednesday_gasifier_montage.mpg

jpg2mp4 Montage*jpg –o wednesday_gasifier_montage.mp4

ADDLOGO.tcl Montage*jpg -logo cpfd_logo.png 150x100+10+10

jpg2mpg logo_Montage*jpg –o out.mpg wednesday_gasifier_montage_with_logo.mpg

jpg2mp4 logo_Montage*jpg –o out.mp4 wednesday_gasifier_montage_with_logo.mp4

• Save, close, and run the script. Play the resulting animation.

35

Logo image name.

Size and position.

List of images to which
logo is added.

The Final Animation

36

Three animations side-by-side.

Logo

Additional Post-Processing

• Using the skills learned for plotting and making animations, answer the following questions.

• We set the cyclone dipleg flow BCs to feed particles at the same mass flow rate as they are being
entrained into each cyclone. Are the feed BCs operating correctly? Are they able to keep up with the
entrained mass flow rate?

• Several transient data points were defined in the project setup to monitor fluid temperature. Plot the data
from these data points, and determine whether there is a significant temperature difference between the
bottom and top of the gasifier vessel. Hint: the data is written to a file named “trans.data00”.

• Does the addition of thermal and chemistry calculations increase the particle entrainment? Plot the
entrainment from the “early entrainment flux plane” for both the Tuesday and Wednesday gasifiers.

• Make a combined animation of all gas species mole fractions. Hint: for large combined animations, make
sure each individual animation is small enough in size. You want to make sure the final combined
animation will fit on a typical screen.

37

Getting Help with the Scripts

• For information about all of the options available for Jupyter notebook, consult the Jupyter
website: http://jupyter.org/index.html

• For help with Python plotting commands, see: https://matplotlib.org/gallery/index.html

• For help with GMV, consult the GMV user’s manual, which is installed by default with Barracuda.
Use the Barracuda GUI menu item Help, GMV User’s Manual.

• For help with the utility scripts introduced in this presentation (BATCHMOVIE.sh, MULTIFRAME.tcl,
jpg2mpg, and ADDLOGO.tcl), run the script without any arguments. A help message will be printed.

38

http://jupyter.org/index.html
https://matplotlib.org/gallery/index.html

Basic Commands for Survival

• The following commands are frequently used in the command-line terminal, and in scripts:

• Change directory: cd

• Entering cd without any arguments takes you to your home directory: cd

• To go up one folder from where you are, use: cd ../

• You can use either “relative” or “absolute” paths.

• Relative: cd documents/

• Absolute: cd /home/lobo/project/

• List directory contents: ls

• To list all details about files in your current directory: ls -l

• To list all PNG files in your current directory: ls *png

• “Change file mode” (permissions): chmod

• Make “PLOTRESULTS.sh” executable: chmod +x PLOTRESULTS.sh

• Make “myfolder” (and all its contents) read+write: chmod -R +rw myfolder/

• Manual pages: man

• Learn about the ls command: man ls

• To get out of a man page, type “q”.

39

Debugging Shell Scripts

• Like programs written in any other language, shell scripts will often have bugs. Here are some tips
to help you in tracking down and fixing problems in your shell scripts.

• Use a text editor with syntax highlighting. This will help to make sure that your scripts are syntactically
correct.

• Write small portions of the script at a time, testing it after each portion is done.

• Use the shell. Any command that you are putting into a shell script can be run directly at a terminal. Does
the command behave properly in a terminal?

• Use echo to output messages at key points in the script. For example:

#!/bin/bash

echo “Entering run_01 directory”

cd run_01

echo “Leaving run_01 directory”

cd ../

• Always test scripts on non-critical data first! You do not want to accidentally delete or overwrite important
files with a mistyped command.

40

Barracuda Command-Line Reference

• You can start the solver from the command-line. This is useful in cases where command-line only access is
available, or when you want to script multiple solver runs in sequence. If your project is named
my_project.prj, you can run it from the command-line with this command:

cpfd.x.17 my_project.prj

• If you have transient data files in the project directory already, and you run the above command, the solver will
ask whether you want to overwrite, append, create new files, or quit. The most common options that people
usually want are overwrite or append. You can specify an optional flag when calling the solver to automatically
answer this question.

Overwrite: cpfd.x.17 -ow my_project.prj

Append: cpfd.x.17 -aw my_project.prj

• You can generate the grid from the command-line. You need to have already defined the grid through the
Barracuda GUI first, and saved the project file so that the grid.i file is created by the GUI.

cpfd.g.17 grid.i

• You can start the Interact utility from the command-line. You need to be in the project directory where the
solver is running when starting the Interact utility. Otherwise, the solver will not receive the Interact signal.

act.17

• You can start the Barracuda GUI from the command-line: barracuda.17

• You can see all solver options from the command-line: cpfd.x.17 -help

41

Note on Text Editors in Windows

• The default text editor in Windows is Notepad which only reads and writes DOS-based end-of-line
(EOL) characters. Cygwin, however, requires UNIX-based EOL characters. This difference can create
confusion when creating scripts in Notepad, which then need to be run in Cygwin.

• The best solution is to install a more advanced text editor, such as Notepad++, which will read and
write Unix-based EOL characters.

• If basic Notepad must be used in Windows for creating scripts, two separate utilities are required
for converting the EOL characters between DOS and UNIX.

• Use unix2dos.exe to prepare a script for editing in Notepad:

unix2dos.exe myscript.sh

notepad.exe myscript.sh

• Use dos2unix.exe to prepare a script for running in Cygwin:

dos2unix.exe myscript.sh

./myscript.sh

42

Converts DOS EOL characters to UNIX

Opens the script in notepad

Converts UNIX EOL characters to DOS

Executes the script

