Wednesday Gasifier Training Problem
Part 2: Advanced Post-Processing

February 2018

CPFD Software LLC
10899 Montgomery Blvd. NE, Suite A
Albuquerque, NM 87111
+1.505.275.3849
www.cpfd-software.com

BARRACUDA
— “ 53557 VIRTUAL REACTOR

g
I

SIMULATE > UNDERSTAND > OPTIMIZE
Barracuda Virtual Reactor, Barracuda VR, Barracuda and CPFD are registered trademarks of CPFD Software, LLC



Training Objectives

* This post-processing training introduces several advanced techniques that are useful in monitoring
and analyzing Barracuda simulations. We will use the Wednesday gasifier as the basis for
demonstrating these techniques.

* The terminal (aka command-line, or shell) is introduced. Many advanced operations can be done
using the terminal.

» Scripts are introduced, using Python to define plots that can be used to easily monitor ongoing
simulations.

* MAKE_ANIMATIONS.sh scripts are introduced, using BATCHMOVIE.sh to automate the creation of
animations.

* Combining multiple views of a simulation into a single animation

* Adding a logo to an animation

SIMULATE > UNDERSTAND > OPTIMIZE




Data File Header Sections

In the discussions that follow, we will be plotting data from Barracuda output files. It is important
to understand the header sections of these files in order to find the correct columns for plotting.

When plotting with Plot Manager, use the Preview button to see the header sections.

When writing custom plotting scripts, use the Post-Run = View Log Files to open text-based
output files and inspect their header section information. Notice that by default only files ending in
*.log and *.otp are listed. Other types of files can be viewed by using the Files of type dropdown.

All text-based Barracuda output files have headers in Standard File Format (SFF), similar to the
format used for *.sff input files at boundary conditions.

#a@ 1 "Time" "s™
#a@ 2 "dt" "s™
#a@ 3 "Volume iterations"™ "%
#a@ 4 "Volume error" "
#@ 5 "u iterations" "
#@ 6 "u error" A
#@ 7 "v iterations" A
#@ 8 "v error" A
#@ 9 "w iterations" "
and so on

* Base on a review of the header information for an output file, you will be able to determine which
column contains the data you wish to plot.

SIMULATE > UNDERSTAND > OPTIMIZE

- .
5



Plot Manager Review

* Whenever possible, use Plot Manager. For many simulation monitoring and analysis tasks, Plot
Manager is the easiest way to quickly visualize data from Barracuda VR’s text-based output files.

* Plots defined in Plot Manager are automatically stored within the Barracuda VR project file, making
them easily accessible for future use.

Iﬂ Barracuda Virtual Reactor with Chemistry - 17.3.0 - /Ctraining\5_Wednesday_Gasifier\my_setup\Tuesday_Gasifier.prj — O x
File View Setup Run Graphics and Output Post-processing Help

©=Evo 2D KE &mH
Project Tree B X

¥ a Chemistry - - -
il Rate Coefficients Name Plot Title X-Axis Title Y-Axis Title P

List of Plots:

J§ Reactions 1 Total particle mass in system System Particle Mass Time (s) Particle Mass (kg)
#. Numerics
(** Time Controls 2 Time-integrated particle entrainment  Time-Integrated Particle Entrainment Time (s) Particle Mass (kqg)

v 4. Data Output

T Flux Planes

AT GMV Output Options

Zm Average Data

2D Plot Data

s« Transient Data

=1 Wall Erosion

++= Particle Attrition

‘. Raw Data

sso Population Data

& Solver Output Units
2 Run < >
. Post-Run

> . plot Manager Specify desired plotting operations here. (1]
L

€ 7Y = > < Add Flot / Edit Plot Copy Plot == Delete Plot ./ Image All | .. Graph all

3 Cyclone 1 Pressure BC Gas Composition Gas Composition at Cyclone 1 Time (s) Time-integrated Mass (kqg)

|Tu esday_Gasifier.prj | C:/ftraining/5_Wednesday_Gasifier/my_setup |

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf



Total Particle Mass in System

System Particle Mass

| ‘ . . a

Time (8)

[& qtGrace: Untitled
G:: x,YI:[zi.asis,:M7:] e
* A common parameter that you should monitor during  a
a Barracuda VR simulation is the total particle mass in 22 sur
the system. M
(+)Go 4830
* Most systems have a known mass of particles at
steady state, and your simulation should match that MO 5
known value. x|
. . . . . pz |pu E“SID
* The total particle mass is recorded in history.log with ==
a column name of “particle mass”. B o
* Create a plot of the total system particle mass using -
Plot Manager. = / i
(7 Plot Operations ? /X
Mame |Tota| particle mass in system | Xeuis Title |Tirne (=) 1/ |
Y-Axis Title |Par‘ticle Mass (kq) / |
Title |S'_.rstem Particle Mass | [] Make Image of Plot
Subtitle | | Mote: Image will be updated during eac
"Make Image" and "Plot" operation.
Legend ® on O Off Image Name: .eps -
File Preview X Y  Line Name Color Style Width Symbol
1 historylog | . 1 17 Black ~ | Solid * | Small-Mediyfn ~ | None
£ >
Add Remove Copy Check Data 0 ./ Make Image CPID Cancel

" COMPUTATIONAL
PAf

SIMULATE > UNDERSTAND > OPTIMIZE



Time-Integrated Particle Entrainment

* The mass of particles entrained from a fluidized bed is Crp— o
often of interest. Barracuda VR records particle mass flow |G- aman
rate, as well as time-integrated particle mass, at flux o Time-Integrated Particle Entrainment
planes. Z |z ‘Wednesday Gasifier Training Problem
re 0K T T T T =1
* Create a plot of the time-integrated particle mass passing ot
. (+) GO -100 - —
through each of the four cyclones using Plot Manager. [—
Tip: from each Pressure BC’s flux plane, plot data from the MO B ol | Coclones
"Time integrated particle mass of all species” column T 4 — St
aX AY =
{? Plot Operations / ? >
Name |Time—integrated particle entrainment | Xesois Title |Time ) :/ |
Y-Axis Title |F’ar‘ticle Mass (kg) / |
Title |Time—mtegrated Particle Entrainment | [] make Image of Flot m % % 100
Time (s8)
Subtitle |Wednesda1,r Gasifier Training Problem | Hote: {mage"-;\-ill LE |_|pda.te|:l during eachfMake
Image" and "Flot" operation
Legend ® on O Off Image Name: .eps -
File Preview X ¥  Line Name Color Style ~
1 |FLUXBC_cyclone_1_pressure (2 1 a Cyclone 1 | Black - | Solid *  Small-Medium ~ |None
2 |FLUXBC_cyclone_2_pressure @ 1 8 Cyclone 2 |Red + | Solid - | Small-Medium * | None
3 |FLUXBC_cyclone_3_pressure L 1 8 Cyclone 3 | Green - | Solid mall-Medium - | None
4 |FLUXBC_cyclone_4_pressure x_« 1 8 Cyclone 4 Blue = Solid Small-Medium ~ | None v
< >
Add Remove Copy Check Data (1 ] ./ Make Image < - Plot > Cancel

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf



Interpreting Time-Integrated Data

* ltisimportant to have a clear understanding | e e mosies - o x
. . . File Edit Data Plot View Window Help
of time-integrated mass data, since many 0K, ¥ = L3205, 45087
Barracuda files utilize this concept. Draw
& Ag Time-Integrated Particle Entrainment
* Inthe plot at right, we are seeing curves Z = o ety D Trame ool —
that represent the total particle mass that 2 . I ]
has passed through each of the four flux A ol i
planes since the beginning of the I ey |
simulation. M Bl | coeones
= 7 g — Cyclone 4
* The time-integrated mass is negativedueto |, 2 |
the sign convention in Barracuda VR. Pz pul | 5 001
PO
* For boundary condition flux planes (e.g., smCV |
Pressure BCs and Flow BCs), flow into the e 400
system is considered positive, while flow 3 -
out of the system is negative. - _so0m . I . I . I . \ .
Exit 0 20 40 ) 60 80 100
 Forinternal flux planes, the sign convention e
is based on axis directions. A z-direction
flux plane reports positive values for flow in  [heeeer. ttited

the positive z-direction, and negative
values for negative z-direction flows.

* By calculating the slope of each time-
integrated line, you can determine the
entrainment rate in units of (kg/s).

SIMULATE > UNDERSTAND > OPTIMIZE




Outlet Gas Composition

For chemically reacting systems, the
gas composition at system outlets is
often of interest.

In Barracuda VR, a flux plane will
record gas composition information
according to the option selected in
the drop-down box labeled Gas
species flux plane behavior.

* The gas composition flux plane file
will have the same name as the
normal flux plane file, with a suffix
of _gasSpc000_006 (the numbers
at the end are determined by the
number of gas species used in the
project).

For the Wednesday Gasifier
example, we chose Mass Time
Cumulative as the gas composition
format at each of the four cyclone
Pressure BCs.

Using Plot Manager, create a plot of
the gas composition at the Pressure
BC of Cyclone 1.

[ Plot Operations ? >
Name |Cyc|0ne 1 Pressure BC Gas Compaosition | XAxs Title |'I'ime (=) |
Y-Axis Title |Time-integrated Mass (kg) |
Title |Gas Compaosition at Cyclone 1 | [1 Make Image of Plot
Subtitle | Wednesday Gasifier Training Problem | ;'If;E.EFII';‘t?LJDEP;"r ‘E'I'tibci updated during each "Make Image"
Legend ® on O Off Image Name: .eps
File Preview X ¥ Line Name Color Style Width
1 |[FLUXBC_cyclone_1_pressure_gasSpc000_006 1 2 CH4 Black ~ | Solid * | Small-Medium =~ None
2 |FLUXBC_cyclone_1_pressure_gasSpc000_006 LR 1 3 co Red - | Solid * | Small-Medium ~  None
3 |FLUXBC cyclone_1_pressure_gasSpc000_006 LN 1 4 coz2 Green ~ | Solid *  Small-Medium =  Mone
4 |FLUXBC_cyclone_1_pressure_gasSpc000_006 \__,\ 1 5 H2 Blue *  Solid * | Small-Medium ~ None
5 |[FLUXBC_cyclone_1_pressure_gasSpc000_006 Q 1 6 H20 Light Purple ~ | Solid - | Small-Medium - | None
6 |FLUXBC_cyclone_1_pressure_gasSpc000_006 Q) 1 7 N2 Grey - | Solid -  Small-Medium = | Mone
7 [FLUXBC cyclone_1_pressure_gasSpc000_006 LN 1 8 02 Sky Blue * | Solid *  Small-Medium =  Mone
g Browse... Q) 1 1 Black - | Solid - | Small-Medium =  MNone
< >
Add Remaove Copy heck Data (1] / Make Image . Plot 0K Cancel

t

A quick way to create rows 2 through 7 is to define
row 1, and then use the “Copy” button. You can
then change the “Y” and “Color” items for rows 2

through 7.

SIMULATE > UNDERSTAND > OPTIMIZE



Interpretation of Gas Composition Plot

This plot is showing time-integrated
data, not mass flow rate. Be careful to
note the difference in meaning.

* As noted earlier, if you want to get
the flow rate of each gas species,
calculate the slope of each time-
integrated line.

The sign convention at Boundary
Condition flux planes is:
* In-flow = positive

*  Out-flow = negative

The gas composition plot can be used
to help judge when the system reaches
pseudo-steady state. Once the time-
integrated lines achieve constant
slope, the gas composition at the
outlet is no longer changing.

[l qtGrace: Untitled (modified) — O *
File Edit Data Plot View Window Help
GO: X, Y = [47.6386, -30.2359]
Draw
Q| Ay Gas Composition at Cyclone 1
Zl =z Wednesday Gasifier Training Problem
0l T I -
~ =
Tt 4
Al
(+) Go 5
5
AutoT =1
g 10 —
AutoO g -
x| |z 2
g L i
g — CH4
x| Ay P — o
PZ Pu 2 15— — €02 -
g — H2
Po| [Cy = L — H20 4
SD:1 g:
cwWeo 20 il _
1.00
Fit
25m : ' : 2
Exit 0 50 100
Time (s)
hopper, , Untitled

SIMULATE > UNDERSTAND > OPTIMIZE



Plot Total Particle Mass in System with a Script

* Previously in this presentation, you made a plot of the total particle mass using Plot Manager.
Here, we will plot the same data using a script.

* As noted previously, in general you should prefer using Plot Manager whenever possible. This example is
meant to be instructive so that you can see how the same plot can be made using a script.

*  We will be using a program called Jupyter notebook. It is an interactive computational environment
which uses the Python scripting language to create plots.
* If Jupyter notebook is not already installed on your system, see this Support Site post for instructions on

downloading and installing the Anaconda Python distribution:
http://cpfd-software.com/customer-support/knowledge-base/installing-the-anaconda-python-distribution

* When plotting data with Jupyter notebook (or any scripting method), it is convenient to start with a
template, so you don’t have to type repetitive parts of the plotting commands. Template scripts are
included in the training directory.

In Linux:
/home/training/barracuda training/scripts

In Windows:
C:\training\scripts

* Using a file browser or command-line terminal, copy the template script
jupyter notebook template.ipynb intoyour project directory.

SIMULATE > UNDERSTAND > OPTIMIZE

10


http://cpfd-software.com/customer-support/knowledge-base/installing-the-anaconda-python-distribution

Opening a Command-Line Terminal

* The Barracuda VR GUI has several built-in
ways to open a command-line terminal.

. . (" Barracuda VR with Chemistry - Wednesday_gasifier.prj EEIEN
* Ashortcut button is always available on the Fle View Seup fun Guphicsand Qutpu_Postprocesing_t

top shortcut button bar. B '=Ed 9o o [HNE & H| it

* The Open Terminal button is available in the  |[eoistTee & x| o Avalysi
POSt-Run SECtIOI’] Of the GUl. ThEr.mal - Default post-processor

Passive Sc..
4 4 BC Conn.

° There |S a menu Item POSt-prOCESSing 9 Secondary: @ GMVY as default post-processor (7) EnSight as default post-processor

. BC Conne...
Open Terminal 4 & Chemistry Utites View Resuls
E Rate C.. ﬁ(.- Plot Utility View Particle Data View Cell Data View Average Cell Data
H H H +& Reactin. |-....
* When any of these is used, a new terminal is : :
#. Numerics ﬂq ;jrhde
. . ) e o ume Fraction
(. Time Co...— q Cell q Cell Average
opened in the currently opened project’s i Toe e = A i | AR
H H P N Partide
working directory. t Fcpl) | (T open temeat ) NE.
AN GMV ... S
Cell Cell Average
mae | o= (alEm | M. | AR
0. -
S Transi. i View images
E or animations partide
s Wall E... — dq Species dq cell dq Cell Average
+e# Particl. <, Convertimage Pressure Gradient Pressure Gradient
.. RawD... [EL_.” or animation Particle
& Solver.. ——— ﬂq Residence Time
2 Run 5 Cenvert GMY q cell q Cell Average
B PotFom & to Ensight files ﬂqparhde ﬂ Fluid Temperature d Fluid Temperature
. Plot Ma... _ A Create e bl
7 i N support file
| Wednesday_gasifier.prj |C:/training/Wednesday_gasifier/my_setup

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf

11



* Using a file browser or command-line terminal, copy the template script
jupyter notebook template.ipynb intoyour Wednesday Gasifiermy setup directory.

* Open a terminal through the Barracuda GUI.
* Type the command seen below to open the Jupyter notebook template.

* This will open the template in your web browser.

BN CAWINDOWS\SYSTEM32\emd.exe — (I >

Microsoft Windows [Version 16.8.162

2017 Microsoft Corporation. All

C:\training\5_Wednesday Gasifier\my_ setup>jupyter-notebook jupyter_notebook template.ipynb

:’1_',",',; D/
X SIMULATE > UNDERSTAND > OPTIMIZE
o AL REACTOK
9 cefdik .,

cpfd-software.com



Jupyter Notebook — System Mass plot

Rename the notebook with a name
of your choice. Click on the file
name to enter a new notebook
name.

A Jupyter notebook is set up with a
top cell of information that is
necessary to run and create plots.

The second cell contains the
template coding to create a plot.
Cells can be added in order to
create additional plots.

In order to “run” the notebook, you
can click in each cell (starting with
the first cell and moving down) and
Ctrl-Enter. Or to run the whole
notebook at one time, use the top
menu bar Cell>Run All.

* Cells should generally be run in
order from top to bottom. This
will ensure that all functions and
variables are properly defined.

" COMPUTATIONAL
PAf

e - O X
— jupyter_notebook_templ X
c @IocaIhost:8889_.f'ncteb-:>Dks,{iupyter_note k_template.ipynb w ’E 2]
- _]Upyter jupyter_notebook template Dnssies cranges) o
File Edit View Insert Cell Kemel Help |Python2 Q
+ = A B 4+ ¥ WM B C code v = | CellToalbar

In [ ]: #matplotlib inline
from _ future__ import division
from _ future_ import print_function
import matplotlib.pyplot as plt
import numpy as np
import os
import subprocess

In [ ]:  # Create a Plot
p = 'file name® # Name (without extension) of plot image to be saved
f = 'data_file' # Input data file
xColumn = @ # Column number for x-data
yColumn = @ # Column number for y-data

fig, ax = plt.subplots()
%, y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True)
ax.plot(x, y, label="My Data')

ax.set_title('plot title')
ax.set_xlabel( x-label")
ax.set_ylabel('y-label")
#ax. set_xlim{xmin=0, xmax=1)
#ax.set_ylim{ymin=8, ymax=1)
#ax. legend(loc="best")

fig.savefig(p + ".png', format='png')

SIMULATE > UNDERSTAND > OPTIMIZE

13



Jupyter Notebook —

Text hightlighted in yellow needs to
be replaced with relevant data for
this system mass plot.

Start with giving the plot a file
name. Use underscores (instead of
spaces) in all file names.

Specify the name of the input data
file. Tab completion will work in the
notebook.

Type in the correct numbers for the
X column and Y column data.

Specify plot title and X and Y axis
labels.

Once all data is input, Ctrl-Enter in
each cell or Cell=Run All to run the
code.

" COMPUTATIONAL
PAf

System Mass plot

— Wednesday_Gasifier_po: X

C | ® localhost:3889/notebooks/Wednesda y_Gasifier_post_processing.ipynb

= . .
- Jupyter Wednesday Gasifier post processing suesses
File Edit View Insert Cell Kemel Help

+ = @EH B 4+ ¥+ M B C code v | = || CellToolbar

In [ ]: #matplotlib inline
from _ future__ import division
from _ future_ import print_function
import matplotlib.pyplot as plt
import numpy as np
import os
import subprocess

In [ ]:  # Create a Plot

p = 'file name® # Name (without extension) of plot image to be saved

f = 'data_file' # Input data file
xColumn = @ # Column number for x-data
yColumn = @ # Column number for y-data

fig, ax = plt.subplots()

%, y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True)

ax.plot(x, y, label="My Data')

ax.set_title('plot title')
ax.set_xlabel( x-label")
ax.set_ylabel('y-label")
#ax. set_xlim{xmin=0, xmax=1)
#ax.set_ylim{ymin=8, ymax=1)
#ax. legend(loc="best")

fig.savefig(p + ".png', format='png')

e - O >

v | By &
A

| Python2 Q

14

SIMULATE > UNDERSTAND > OPTIMIZE



Jupyter Notebook — System Mass plot

2] - O *
. Wednesday_Gasifier_po: X
C | @ localhost:3889/notebooks/Wednesday_Gasifier_post_processing.ipynb hd | % &
- Jupyter Wednesday Gasifier post processing suesses [
I File Edit View Insert Cell Kemel Help | Python2 O
Remember to save! —
) + = H B 4+ 4+ M B C Code v CellToolbar
import matplotlib.pyplot as plt -
import numpy as np
import os
import subprocess
In [2]: | # Create a Plot
/ p = 'system_mass' # Name (without extension) of plot image to be saved
. f = 'history.log’' # Input data file
The fl rst CE” Only xColumn = 1 # Column number for x-data
yColumn = 17 # Column number for y-data
needs to be run when 5
ig, ax = plt.subplots()
. ¥, ¥y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True)
the nOtEbOOk haS fIrSt ax.plot(x, y, label="My Data')
been Opened or When ax.set_title( 'Wednesday Gasifier System Particle Mass')
ax.set_xlabel( 'Time (s))
ax.set_ylabel( 'Mass (kg)')
any neW mOdUIes are #ax.set_xlim(xmin=8, xmax=1)
#ax.set_ylim(ymin=8, ymax=1)
addEd. #ax.legend(Lloc="best")

fig.savefig(p + '.png', format="png")
Afte r th e Cel I has 2840 Wednesday Gasifier System Particle Mass

been run, changes |

4530 |

can be made to the as |
cell and run again.

4520 |

Mass (kg)

4515 |

4810

4505 |

4300

4795 . . . .
o 20 40 60 80 100
Time {s)

SIMULATE > UNDERSTAND > OPTIMIZE
COMPUTATIONAL

cpfdi.. 15



Jupyter Notebook — Time-integrated Particle
Entrainment with Summation

Earlier in this presentation, we
plotted the time-integrated particle
mass leaving through the four
cyclone Pressure BC flux planes. We
can make the same plot from the
notebook, and furthermore we can
perform a summation of the four
cyclones to include in the plot.

Copy the system mass cell and paste
it in a new cell below that cell. Click
in the system mass cell, then:

* Edit=>Copy Cells
* Edit>Paste Cells Below

Replace name for plot, data file
input, X and Y column, and plot
title.

Add a label and uncomment the
legend line.

COMPUTATIONAL
PARTICLE

(Zpﬁij;mwwmm

In [2]:

# Create a Plot

p = 'entrained particle mass’

f = "FLUXBC_cyclone_1 pressure” # Input daota file

xColumn
yColumn

1 # Column number for x-data
8 # Column number for y-data

fig, ax = plt.subplots()
y = np.genfromtxt({f, usecols=(xColumn-1,yColumn-1), unpack=True)

K
ax

ax
ax
ax

.plot(x, y, label="Cyclone 1)}

.set_title( 'Wednesday Gasifier Entrained Particle Mass')
.set xlabel{ 'Time (s)")
.set_ylabel({ 'Mass (kg)')

#ox.set_xlim(xmin=8, xmax=1)
#ax.set_ylim{ymin=8, ymax=1)

ax

.legend({loc="best")

fig.savefig(p + '.png', format='png')

16

# Name (without extension) of plot imoge to be saved

SIMULATE > UNDERSTAND > OPTIMIZE



Jupyter Notebook — Time-integrated Particle
Entrainment with Summation

* Inorder to input the data for all In [3]: | # create a plot
four cyc|ones' we will need to move p = 'entrained_particle mass' # Name (without extension) of plot image to be saved
®Column = 1 # Column number for x-data

the lines around in the Script' yColumn = 8 # Column number for y-data

fig, ax = plt.subplots()

* First, cut the input data file line and —
paSte it as shown. f = "FLUXBC_cyclone_1 pressure' # Input dato file
¥, ¥y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=Trus)

* Next, copy and paste the 3-line ax.plot(x, y, label='Cyclone 1')
bIOCk Of COde three times. Then f = "FLUXBC cyclone 2 pressure’ # Input data file
change the data file name and label %, ¥ = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1}, unpack=Trus)

i -plot(x, y, label="Cyrcl D-
to include all four cyclones. ax.plot(x, y, label='Cyclone 2')
f = "FLUXBC_cyclone_3 pressure’ # Input data file

* Next, we will add a line for the %, ¥y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True)
i -plot(x, y, label="Cycl 3
summation of all four cyclone’s ax.plot(x, y, label='Cyclone 3')
entrainment, f = "FLUXBC_cyclone_4 pressure’ # Input data file

¥, ¥ = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1}, unpack=True)
ax.plot(x, y, label='Cyclone 4')

ax.set_title( 'Wednesday Gasifier Entrained Particle Mass')
ax.set_xlabel('Time (s)")

ax.set_ylabel( 'Mass (kg)")

#Fax.set_xlim{xmin=0, xmax=1)

#ax.set_ylim{ymin=08, ymax=1)

ax.legend(loc="best")

fig.savefig(p + ".png', format="png')

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf

17



Jupyter Notebook — Time-integrated Particle
Entrainment with Summation

In [3]: # Create ag Plot
p = 'entrained_particle mass' # Nome (without extension) of plot image to be saved

* To sum the mass for all four

cyclones, we will have to Change the xColumn = 1 # Column number for x-data
name for the Y value in each pIOt yColumn = 8 # Column number for y-data
We can easily do this by changing fig, ax = plt.subplots()

CVC|0ne 1 y to V1, CYCIOne 2 V to V2, \F = 'FLUXBC_cyclone_ 1 pressure’ # Input data file

and SO On x, y1 = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True}
) ax.plot(x, yl1, label="Cyclone 1)
* Define the summation equation. f = 'FLUXBC cyclone 2 pressure’ # Input data file
X, ¥2 = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True}
* Add a new “ax.plot” command to ax.plot(x, y2, label="Cyclone 27)
include the calculated summation £ = 'FLUXBC_cyclone_3_pressure’ # Input data file

X, y2 = np.genfromtxt(f, usecols={xColumn-1,yColumn-1), unpack=True})
ax.plot(x, y3, label="Cyclone 3")

line to the plot.

e Crtl=>Enter to run the cell and f = 'FLUXBC cyclone 4 pressure’ # Input data file
x, y4 = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True}
create the pIOt ax.plot(x, y4, label="Cyclone 4')

v =y1+y2+ y3 + y4
ax.plot(x, y, label="Sum of all cyclones')

ax.set_title( 'Wsdnesday Gasifier Entrained Particle Mass')
ax.set_xlabel('Time (s)")

ax.set_ylabel('Mass (kg)")

#ax.set_xlim(xmin=8, xmax=1)

#ax.set_ylim(ymin=8, ymax=1)

ax.legend(loc="hest")

fig.savefig(p + '.png', format='png')

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf

18



Jupyter Notebook — Time-integrated Particle
Entrainment with Summation

Wednesday Gasifier Entrained Particle Mass

1]
=200 |
=400
. —a00 |
)
ﬁ —300 |
— Cyclone 1
= _1000 | y
— Cyclone 2
-1200 | — Cyclone 3
_wang L — Cyclone 4
—  Sum of all cyclones
~1600 - : - '
0 20 40 ] B0 100 120
Time {s)
- BARRACUD. SIMULATE > UNDERSTAND > OPTIMIZE

-~ eheisii VIRTUAL REACTOR 19



Jupyter Notebook — Compare Runtimes of Two Runs

It is often useful to quantify how fast a
simulation is running, or to compare two
runs to see their relative runtimes. In our
case, it is interesting to compare the
runtimes of the Tuesday and Wednesday
gasifiers. This will give us an idea of the
combined impact of (1) refining the grid,
and (2) adding thermal and chemistry
calculations.

* There are various ways to talk about
runtime. For this example we will
make a plot of the number of seconds
simulated versus the number of hours
of real time required. The cumulative
real time spent by the solver is
recorded in the history.log file under
the column “CPU (s)”. This column will
be a different number for the two
simulations due to thermal and
chemistry changes in history.log.

Create a new cell below the entrainment
plot cell. Insert>Insert Cell Below

Copy and Paste the text from the system
mass plot cell into the new cell.

COMPUTATIONAL
PARTIC

cpfdi

In [ ]:  # Create a Plot

p = 'runtime_comparison’

f = 'history.log' # Input data file

My
ax

dx
ax
ax

b xColumn
yColumn

1 # Column number for x-dato
17 # Column number for y-data

fig, ax = plt.subplots()

# Name (without extension) of plot image to be saved

y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1}), unpack=Trues)

.plot(x, y, label="My Data')

.set_title( 'Wednesday Gasifier Runtime Comparison')
.set_xlabel('Real Time (days)"')
.set_ylabel( 'Simulated Time (s5)")

#ax.set_xlim(xmin=6, xmax=1)
#ax.set_ylim(ymin=6, ymax=1)
#ax.legend(loc="best")

fig.savefig(p + '.png', format='png')

For the runtime comparison plot, the data file line and
the X and Y column lines have to be moved because of

"~ differences between the two simulations. See next
slide for details.

20

SIMULATE > UNDERSTAND > OPTIMIZE



Jupyter Notebook — Compare Runtimes of Two Runs

In [14]: # Create a Plot
p = 'runtime comparison' # Name (without extension) of plot image to be saved

The file name for
fig, ax = plt.subplots()

history.log for Tuesday \
. g f = "../../3_Tuesday _Gasifier/my_setup/history.log' # Input data file
ga5|f|er, must have the xColumn = 15 # Column number for x-data

yColumn = 1 # Column number for y-data

correct path ¥, ¥y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True}
x=x/360808
ax.plot(x, y, label='Tuesday Gasifisr’)

f = "history.log' # Input dota file
|n Order to ShOW the xColumn = 18 # Column number for x-data

CAavic i . yColumn = 1 # Column number for y-data
X-axis In units Of %, ¥ = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True}

x=x/3668
hOUl’S, we ha\{e to ax.plot(x, y, label="Wednesday Gasifier')
convert the history.log

ax.set title('Runtime Comparison')

data from seconds to ax.set_xlabel('Real Time (hours)')
ax.set_ylabel('Simulated Time (s)")
hOUI’S. #ax_set_xlim(xmin=8, xmax=1)

#ax.set_ylim(ymin=0, ymax=1)
ax.legend(loc="best"}
Be sure to /Fig_gauefig(p + '.png', format='png')
uncomment the
legend line in order

to see the labels for 100 |
each line.

120 Runtllme Compalrlson

Simulated Time (s)
g

— Tuesday Gasifier
— Wednesday Gasifier

0 5 10 15 20 25
Real Time (hours)

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf

21



Interpreting the Runtime Plot

One important new concept is that the first data file we read is actually in a different directory. The path

../../3 Tuesday Gasifier/my setup/history.log tellsthe Jupyter notebook exactly
which file we want.

Another new idea is using mathematical operations on a set, and assigning the results back to that same
set. The command x=x/3600 changes the time scale of the x-axis from seconds (which is the default
unit in the history.log file) to hours.

An observation based on the plot:

* We see that the Tuesday gasifier
runs much faster than the Wednesday
gasifier. It reached the 100 s end-time
in a few hours, while the Wednesday
gasifier took almost 24 hours to reach
100 s.

Runtime Comparison

120

It is important to realize the relative costs
of the choices made during project setup.

* Refining the grid can give more accurate
answers, but increases the runtime.

Simulated Time (s}

* Chemistry and thermal calculations are
often necessary for realistic simulations,
but they also add computational cost.

— Tuesday Gasifier
— Wednesday Gasifier

10 15 20 25
Real Time (hours)

SIMULATE > UNDERSTAND > OPTIMIZE

22



Determining the slope of Runtime plot

In [17]:
* To speak of the runtime data in terms of a
rate of simulation seconds per hour of real
time, we can use linear regression to
calculate the slopes of the runtime lines. / import os
* Add the highlighted line to the top celland = ;...

CrtI=>Enter in that cell. This will import a
module which will allows us to perform the

regression on the lines. f_ -

xColumn

* Add the following lines (remember: copy and
paste is your friend).

* The first line filters to include only the data
equal to or after 80 seconds. You can change
this number to see how the line regression
changes as more of the data is included.

xColumn

* The second line says that you want a linear
regression on the x and y data in the time
range specified in the previous line.

slope, intercept, r_value, p_wvalue, std_err =
print("Speed of Wednesday Gasifier:", “{:.2f}".format(slope), "(s/hr)")
ax.plot{x, y, label="Wednesday Gasifier')

* The third line tells the notebook to print out
the slope calculated by the linear regression,
with some text before and after the
numbers.

../ ../3_Tuesday_Gasifier/my_setup/history.log’

f = "history.log’

#matplotlib inline

from _ future__ import division

from _ future__ import print_function
import matplotlib.pyplot as plt
import numpy as np

from scipy import stats

import subprocess

# Create a Plot
p = "runtime_compariscn’

# Name (without extension) of plot image to be saved

fig, ax = plt.subplots()

# Input data file
15 # Column number for x-data

yColumn = 1 # Column number for y-daota

¥, y = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1}, unpack=True}

x=x/3608

tRange = (y >= 88) # Only use t »= 89 =

slope, intercept, r_value, p_wvalue, std_err =

print("Speed of Tuesday Gasifier:", "{:.2f}".format(slope), "(s/hr)}™)
ax.plot{x, y, label="Tuesday Gasifier')

stats.linregress({x[tRange],y[tRange])

# Input data file
18 # Column number for x-data

yColumn = 1 # Column number for y-data
¥, ¥ = np.genfromtxt(f, usecols=(xColumn-1,yColumn-1), unpack=True)
x=x/3600

.1:tRange = (y »= 88) # Only use t »= 88 s

stats.linregress(x[tRange],y[tRange])

ax.set_title('Runtime Comparison')
ax.set_xlabel('Real Time (hours)')

ax.set_ylabel('Simulated Time (s)")

» After adding the lines, Crtl=>Enter

#ax.set_xlim(xmin=8, xmax=1)
#ax.set_ylim(ymin=8, ymax=1)

ax.legend(loc="best")

fig.savetig(p +

" COMPUTATIONAL
PAf

23

‘.png', tormat='png')

SIMULATE > UNDERSTAND > OPTIMIZE



Interpreting the Runtime Plot

* The output from the notebook will now include the slope of each line with units of simulated
seconds per hour of real time. Remember that this slope is only for 80-100s.

Speed of Tuesday Gasifier: 48.%94 (s/hr)
Speed of Wednesday Gasifier: 4.23 (s/hr)

Runtime Comparison
120 T - P

100

Simulated Time (s)
=

— Tuesday Gasifier
— Wednesday Gasifier

o 5 10 15 20 25
R=al Time (hours)

o]

SIMULATE > UNDERSTAND > OPTIMIZE

24



* Once you are finished using the Jupyter notebook, close it by following these steps:

1. Save the notebook, and close the browser tab

& [m] kY
Wednescsy Gasifier_p O

2 | @ localhost 1Tr EEll
Ju pyter Wednesday Gasifier post_processing s A
(::) + 3 BB+ ¢ HEC v CelTacibar
import matplotlib.pyplot as plt .

import numpy as np
import o

import SuDprOCess

2. Inthe command terminal that was originally used to start the notebook, type Ctrl-C twice.

EE CAWINDOWS\SYSTEM32\emd. exe

~\pre_setup

to skip confirmation).

ssing.ipynb

i
SIMULATE > UNDERSTAND > OPTIMIZE

A A COMPUTATION.
cpfd-software.com cefd k.



GMV Attribute Files

* GMV uses attribute files to store view settings.

* Open a GMV window with particles colored by
volume fraction.

* Tip: whenever possible, start with the shortcut
buttons in the Barracuda GUI.
Run = Particle Volume Fraction.

* Resize the GMV window so that the view “fits” the

geometry. For the Wednesday Gasifier geometry, a

window that is tall and not too wide works well.

* Save an attribute file of the view with a name such
as “particles_volfrac.attr”

* Close GMV and open a command-line terminal in
your current project directory for the next step in
creating an animation from the attribute file just
saved.

" COMPUTATIONAL
PAf

In this case use Post-

26

" Read GMY File r

GMV V4.6.2 built 2015-05-19

FileIDisplau Calculate Ctl-1 Ctl-2 Ctl-3 Reflections Vieu

- (] X

> Put Attributes m
" Get Attributes T
Read GMV RAY file
 Snapshot
Save gmvrc

Write Yariables ~

files

Aeygdrivedc/training/S_llednesday_Gasifier

S 0.0

i —l=g d] 8.5

FEEs | I 126.0

QuIT

L

Particles VolFrac
rarucies voirrac

0.6

0.59

—0.48

—0.92

—0.36

0.3

0.29

—0.18

0.06

1.0000047 e+02

o=
| N
| .

Put Attributes

Filter

Ichgdriuefcﬁtraininng_Mednesdag_GasiF1er#m5_satup!*attd

Files

- | CPFD_ECs.attr
CPFD_grid_trans,attr
CPFD_tranz_tracers_species,attr
CPFD_trans_tracers_vol_frac,attr
CPFD_transient_data_points,attr

N Dlrecturlas

=

‘1pgnb checkpoints
PlotImages

7] 4
- = =1 = [P

Selection

|iningf5_wednesdau_ﬁasiFier/mu_setupfparticles_uolFrac.attr{|

Filter Cancel Help |

Ok |
.; 4 Vo Ll

SIMULATE > UNDERSTAND > OPTIMIZE



Opening a Command-Line Terminal

* The Barracuda VR GUI has several built-in
ways to open a command-line terminal.

« A shortcut button is always available on the B o R oy g=siecpd ==l x|
top Shortcut button bar File View Setup Run Graphics and Qutput  Post-processing  Help
. . . . O | 1 Q)@
e The Open Terminal button is available in the p,gm fxa ® . 304 Lad
Post-Run section of the GUI. EL S ostaun anslss
assive Sc... Default post-processor
* There is a menu item: Post-processing > Py e _
open Terminal Secondary. @ GMV as default post-processor (") EnSight as default post-processor
. . . 4 . B(cj::mnxr! Utilities View Results
* When any of these is used, a new terminal is B Rate C. L e e e i orerage Cell Dt
i 1 ’ ¥§ Reacti...
y. 4 ‘ Data Ou... — q ﬂq Volume Fraction aq Volume Fraction
. . . 1 FluxPL. 1 N Pt
* Depending on which operating system you aon| || (@onem) ﬂ — — —
are using, the following terminals will be o e ks Al | A5 Alsa
opened by default when you use the GUI’s FoTenel | Bl s Al
Open Terminal functionality. vee Particl, P Al AN e |
. .. RawD... [EL. or animation aricle
o LII’]UXZ Xterm .ﬂ‘ Solver.. —ﬁ ﬂq;es?inceﬂme
® WlndOWSZ Cmd j,.‘ E::t—llun M ﬂqparhde a‘_qlglilildTemperah.Jre ﬂ_qlglilildn'l‘feen:?)gefamre
= Plot Ma... _ ____ Create Temperature
* Tip: On Windows, in order to run some @r@ spport le
: % . . .
Scrlpts ( 'Sh) In thls presentatlon’ Sta rt an |Wednesday_gasifier.prj |C:ftraininngednesday_gasifien"my_setup

xterm from the cmd window by simply
typing:

Xterm

SIMULATE > UNDERSTAND > OPTIMIZE

COMPUTATIONAL

cefdi: 27




Getting to Know the Terminal

Depending on whether you are using a native
Linux version of xterm, or the version
included in Cygwin on Windows, the prompt
may look slightly different. However, the
same basic information is usually presented:

* Username

* Machine name

* Current working directory

* A prompt symbol, indicating that the terminal
is ready to accept input

Tip: xterm supports tab-completion, which
allows you to start typing commands or file
names, then press the Tab key on your
keyboard and the terminal will finish your
command or file name if a match is available.

Tip: xterm has command history built-in,
which allows you to re-run previous
commands easily. At the prompt, use the Up
arrow key on your keyboard to cycle through
previously typed commands.

feygdrive/c/training/Wednesday_gasifier/my_setup

(== =)

Hain Optionz ¥T Options ¥T Fonts

lobaldemnu
$ ]

28

SIMULATE > UNDERSTAND > OPTIMIZE



Using BATCHMOVIE.sh

* BATCHMOVIE.sh is a script that creates animations from GMV files, using attribute files such as the

one we just saved. _
Commands needed in

*  Run BATCHMOVIE.sh with the following command: / Windows are highlighted.

BATCHMOVIE.sh particles volfrac.attr -mp4
| — J
I}

Attribute file name

* You will see information scrolling in the terminal as each GMV file in the directory is read, and an
image is made based on the attribute file specified.

* The command shown above is the simplest syntax of BATCHMOVIE.sh. It assumes that you want to
create images from all Gmv* files in the current directory. If you do not want to use all Gmv* files,
or if you want to do something else more advanced, see the BATCHMOVIE.sh usage information
that is displayed when you call the script with no arguments:

BATCHMOVIE. sh

* At the end of the process, BATCHMOVIE.sh will create an animation with name <attribute>.mpg
(Linux) or <attribute>.mp4 (Windows) and return control back to the terminal. To play the
animation, use the command:

* Linux-xanim particles volfrac.mpg

*  Windows — play the file with Windows Media player or similar video player

SIMULATE > UNDERSTAND > OPTIMIZE

- .
5

29



Make Several Animations

D78 MW V4.5.2 built 2011-09-26

D78 MW V4.5.2 built 2011-09-26

. . . File Display Calculate Ctl-1 Ctl-2 Ctl-3 Reflections View File Display Calculate Ctl-1 Ctl-2 Ctl-3 Reflections View
e C fth I
reate tWO more VIeWS 0 t e SI m u atlon & Current file: raining/barracuda_training/lednesday_gasif & Current file: raining/barracuda_training/lednesday_gasif
y | s Y e —| ]

results. Shown at right are suggestions.

Elev, [ e TR
fein. [T e

Elew, [ 1 0.5
fein. [T 80

6.9202446e+01 6.9202446e+01

* Tip: remember to start with the built-in
Post-Run shortcut buttons in the
Barracuda VR GUI. These are the easiest

way to open GMV with a view that is R e
probably close to what you want.
0.45 1284.376
* For each view, save an attribute file.
oz | —0a oz | = —1263.175

* Proceed to the next slide to create a
script that makes animations from all of
your available attribute files.

—1241.975
—1220.774

1199.574

* Tip: It is a good idea to make all of your
GMV windows the same size so that the
side-by-side views are consistent. Use Ctl- 015
3 >Window size to specify a window
size that fits the geometry well and use
that same dimension for each GMV 005
window. 0

1178.373

1157173

1135972

1114.772

1093.571

Cells colored by fluid temperature,
half-section of vessel using subset.
Attribute filename: cells_f-Temp.attr

Cells colored by mole fraction of H2,
half-section of vessel using subset.
Attribute filename: cells_H2.nf.attr

P etntt e
iesetee

CUDA

SIMULATE > UNDERSTAND > OPTIMIZE

30



MAKE_ANIMATIONS.sh Script

* If you have a long-running simulation, it is useful to combine several BATCHMOVIE.sh calls into a single
script. This way, when you want to update all of the animations, you run just the single script.

* BATCHMOVIE.sh was designed so that it only creates images from GMV files that were not present the last
time it was run. This makes it very efficient at updating animations, since any frames that were previously
created do not have to be made again.

* Linux: Create a new script using a command like this:

gedit MAKE ANIMATIONS.sh <+——— Specifying the filename here creates a new file.
*  Windows: Use Notepad++ to create a text file with the name MAKE_ANIMATIONS.sh (see next slide)
* Inthe script, put the following commands:

#!/bin/bash

— . . .
BATCHMOVIE.sh cells f-Temp.attr -mp4 Each line is executed in turn,
BATCHMOVIE.sh cells H2.nf.attr -mp4 <+ so all three animations will be
BATCHMOVIE.sh particles volfrac.attr —-mp4 <«——— created when the script

* For Linux, do not include the —mp4 after each attribute file name. finishes running.
* Save the file and close text editor.
* Linux: Make the script executable:

chmod +x MAKE ANIMATIONS.sh

* Run the script by typing the script name in the terminal and pressing Enter:

MAKE ANIMATIONS.sh

<+—— Depending on how many GMV files are in your directory, and how big they
are, the script could take several minutes to run. Even so, it is faster than
using the GMV GUI auto-read feature.

SIMULATE > UNDERSTAND > OPTIMIZE

31



Using Notepad++ for Writing Scripts in Windows

When using Cygwin on Windows, scripts need to be saved with Unix (LF) line endings. You only
need to perform this step once, the first time you save each script.

g *Chtraining'3_Wednesday_Gasifier\pre_setup'MAKE_ANIMATIONS.sh - Motepad++

File Edif_ Searc - Tools  Macre  Run Pluging  Window 7
Save afterchanging | « = |m == 1 =

= make_anma t0 UNiX (LF)

1

EEAzE®| @ =D B ]| S

| >
A

f!/bin/bash

2
£ BATCHMCVIE.sh cells f-Temp.attr —mp4
4 BATCHMCOVIE.sh cells HZ.nf.attr -mp4
3 BATCHMOVIE.sh particles volfrac.attr -mp4
&
7 MULTIFRAME.tcl h cells f-Temp cells HZ.nf particles volfrac
B
3l jpg2mpg Montage*jpg —o wednesday gasifier montage.mpg
10
11 jpg2mp4 Montage*jpg —o wednesday gasifier montage.mp4
12
13 ADDLOGC.tcl Montage*jpg —-logo cpfd logo.png 150x100+10+410
14
15 I pg2m logo Montage*] -o out.m wednesda asif . .
i Jpgempg go_. ge™ipg Pg ¥ 9 nght'C“Ck, and =
17 jpg2mp4 logo Montage*jpg —o out.mp4 wednesday gasif Choose Uan (LF) o4
18
Unix script file length: 531 lines: 18 Ln:1 Col:1 Sel:0]0 Windows “~7 ™ 2T NS

" COMPUTATIONAL
PAf

32

Windows (CR LF)

FMacintosh (CR)

SIMULATE > UNDERSTAND > OPTIMIZE



Using MULTIFRAME.tcl to Combine Animations

* Combining several animations into a single animation is very useful, especially when trying to
understand and explain how different aspects of physics, thermal, and chemistry interact.

« MULTIFRAME.tcl is a script that operates on multiple sets of images, combining them into a new set
of images starting with “Montage”.

* Using the three animations that we just created, add to your MAKE_ANIMATIONS.sh script so that it
includes a MULTIFRAME.tcl command and a jpg2mpg (Linux) or a Jpg2mp4 (Windows)
command to combine the resulting Montage*jpg files into a final animation.

#!/bin/bash

BATCHMOVIE.sh cells f-Temp.attr -mp4

BATCHMOVIE.sh cells HZ.nf.attr -mp4

BATCHMOVIE.sh particles volfrac.attr —-mp4

MULTIFRAME.tcl h cells f-Temp cells HZ.nf particles volfrac

JpgZ2mpg Montage*jpg —-o wednesday gasifier montage.mpg

Jjpg2mp4 Montage*jpg —-o wednesday gasifier montage.mpi4

* Save, close, and run the script. Play the resulting animation.

i e
. BARRACUDA
eo%eiss’ VIRTUAL REACTOR

SIMULATE > UNDERSTAND > OPTIMIZE

33



MULTIFRAME.tcl to Combine Animations - explained

#!/bin/bash

BATCHMOVIE.sh cells f-Temp.attr —-mp4
BATCHMOVIE.sh cells HZ2.nf.attr —-mp4
BATCHMOVIE.sh particles volfrac.attr —-mp4

MULTIFRAME.tcl h cells f-Temp cells H2.nf particles volfrac

I I I

Directories where images are stored.

Linux:
Jpg2mpg Montage*Jjpg —-o wednesday gasifier montage.mpg
4 jpg2mpg creates an output file named
out.mpg by default. You can use the —o
flag to specify a different output file
Windows: name.

JpgZmp4 Montage*jpg -0 Wednesday_gasifier_montage.mp{
t | t |

jpg2mp4 creates an output file named New output file name.

out.mp4 by default. You can use the —o

flag to specify a different output file

name.

SIMULATE > UNDERSTAND > OPTIMIZE

34



Adding Logos to Animations

Adding your company’s logo to an animation can be accomplished using the ADDLOGO.tcl script.

Modify the MAKE_ANIMATIONS.sh script to add an ADDLOGO.tcl command, as well as another
jpg2mp4 call:

#!/bin/bash

BATCHMOVIE.
BATCHMOVIE.
BATCHMOVIE.

MULTIFRAME.

sh cells f-Temp.attr -mp4
sh cells H2.nf.attr -mp4
sh particles volfrac.attr -mp4

tcl h cells f-Temp cells H2.nf particles volfrac

jpg2mpg Montage*jpg —-o wednesday gasifier montage.mpg

List of images to which

jpg2mp4 Montage*jpg —-o wednesday gasifier montage.mpé logo is added.
ADDLOGO.tcl'Montage*jpgl:logolcpfd_logo.png“150x100+10+1q
1 t Size and position.

Logo image name.

jpg2mpg logo Montage*jpg —-o out.mpg wednesday gasifier montage with logo.mpg

jpg2mp4 logo Montage*jpg —-o out.mp4 wednesday gasifier montage with logo.mp4

Save, close, and run the script. Play the resulting animation.

SIMULATE > UNDERSTAND > OPTIMIZE

35



The Final Animation

ARTICLE
FLUID DYNAMICS

Logo N cp £ o 6.9202446+01 6.9202446¢+01 6.9202446+01

Cells f-Temp Cells H2.nf Particles VolFrac
1305.576 05 0.6
1284.376 0.45 0.54

—1263.175 —0.4 —0.48

—1241.975 —0.35 —0.42
1220.774 03 —036
1199.574 ” 0.25 0.3
1178.373 0.2 0.24
1157.173 0.15 0.18
1135.972 0.1 0.12
1114.772 0.05 0.06
1093.571 0 0

L J L J J

Three animations side-by-side.

[ BarracUDA
[ a3 VIRTUAL REACTOR

SIMULATE > UNDERSTAND > OPTIMIZE

COMPUTATIONAL
RTICLE

cpfd:

36




Additional Post-Processing

* Using the skills learned for plotting and making animations, answer the following questions.

* We set the cyclone dipleg flow BCs to feed particles at the same mass flow rate as they are being
entrained into each cyclone. Are the feed BCs operating correctly? Are they able to keep up with the
entrained mass flow rate?

* Several transient data points were defined in the project setup to monitor fluid temperature. Plot the data
from these data points, and determine whether there is a significant temperature difference between the
bottom and top of the gasifier vessel. Hint: the data is written to a file named “trans.data00”.

* Does the addition of thermal and chemistry calculations increase the particle entrainment? Plot the
entrainment from the “early entrainment flux plane” for both the Tuesday and Wednesday gasifiers.

* Make a combined animation of all gas species mole fractions. Hint: for large combined animations, make
sure each individual animation is small enough in size. You want to make sure the final combined
animation will fit on a typical screen.

SIMULATE > UNDERSTAND > OPTIMIZE

37



Getting Help with the Scripts

* For information about all of the options available for Jupyter notebook, consult the Jupyter
website: http://jupyter.org/index.html

* For help with Python plotting commands, see: https://matplotlib.org/gallery/index.html|

* For help with GMV, consult the GMV user’s manual, which is installed by default with Barracuda.
Use the Barracuda GUI menu item Help, GMV User’s Manual.

* For help with the utility scripts introduced in this presentation (BATCHMOVIE.sh, MULTIFRAME.tcl,
jpg2mpg, and ADDLOGO.tcl), run the script without any arguments. A help message will be printed.

training@elephant:~/barracuda_training/Wednesday gasifier/my setup

File Edit View Search Terminal Help
training@elephant:~/barracuda training/Wednesday gasifier/my setup= BATCHMOVIE.sh -

Most Basic Usage:  BATCHMOVIE.sh <attribute file pattern=

More Complex Usage: BATCHMOVIE.sh <input file pattern= <attribute file pattern> [step size] [-nompg] [-rgb] [-stereo]
Two Attr. Files: BATCHMOVIE.sh <input file pattern= [-al =file= -a2 =file=] [-nframes =n=] [-name <string=]

Attr. Parameters: BATCHMOVIE.sh <input file pattern> <base attr. file> [attr. options] [-nframes <n=] [-name <string=]

where: <input file pattern= 1s usually something like Gmv. Instead of
specifying a single pattern, which was the original syntax of
BATCHMOVIE.sh, you can use the -i flag and give multiple file
names or shell patterns. An example of using the -1 flag:

BATCHMOVIE.sh -i Gmv.008+* Gmv.083* Gmv.805* fluid temp.attr

The -i flag must be the first argument, and the list of input files
is terminated by the presence of an attribute file name. It is
important that the attribute file end with the .attr extension, as
that is what BATCHMOVIE.sh looks for to determine the end of the
input file list. Also, any patterns or file names given must have
files that exist that match the pattern. If the script cannot find
any input files matching a given pattern, it will exit with an error
message indicating the problem. -

SIMULATE > UNDERSTAND > OPTIMIZE

" COMPUTATIONAL
PAf

38


http://jupyter.org/index.html
https://matplotlib.org/gallery/index.html

Basic Commands for Survival

* The following commands are frequently used in the command-line terminal, and in scripts:
* Change directory: cd
* Entering cd without any arguments takes you to your home directory: cd
* To go up one folder from where you are, use: cd ../
* You can use either “relative” or “absolute” paths.
* Relative: cd documents/
* Absolute: cd /home/lobo/project/
* List directory contents: 1s
* To list all details about files in your current directory: 1s -1
* To list all PNG files in your current directory: 1s *png
* “Change file mode” (permissions): chmod
* Make “PLOTRESULTS.sh” executable: chmod +x PLOTRESULTS.sh
* Make “myfolder” (and all its contents) read+write: chmod -R +rw myfolder/
* Manual pages: man
* Learnabout the Iscommand: man 1s

o, n

* To get out of a man page, type “q”.

SIMULATE > UNDERSTAND > OPTIMIZE

39



Debugging Shell Scripts

* Like programs written in any other language, shell scripts will often have bugs. Here are some tips
to help you in tracking down and fixing problems in your shell scripts.

* Use a text editor with syntax highlighting. This will help to make sure that your scripts are syntactically
correct.

* Write small portions of the script at a time, testing it after each portion is done.

* Use the shell. Any command that you are putting into a shell script can be run directly at a terminal. Does
the command behave properly in a terminal?

* Use echo to output messages at key points in the script. For example:

#!/bin/bash

echo “Entering run 01 directory”
cd run 01

echo “Leaving run 01 directory”
cd ../

* Always test scripts on non-critical data first! You do not want to accidentally delete or overwrite important
files with a mistyped command.

SIMULATE > UNDERSTAND > OPTIMIZE

40



Barracuda Command-Line Reference

* You can start the solver from the command-line. This is useful in cases where command-line only access is
available, or when you want to script multiple solver runs in sequence. If your project is named
my project.prj,you can run it from the command-line with this command:

cpfd.x.17 my project.prj

* If you have transient data files in the project directory already, and you run the above command, the solver will
ask whether you want to overwrite, append, create new files, or quit. The most common options that people
usually want are overwrite or append. You can specify an optional flag when calling the solver to automatically
answer this question.

Overwrite: cpfd.x.17 -ow my project.pr]
Append: cpfd.x.17 -aw my project.pr]

* You can generate the grid from the command-line. You need to have already defined the grid through the
Barracuda GUI first, and saved the project file so that the grid.i file is created by the GUI.

cpfd.g.17 grid.i

* You can start the Interact utility from the command-line. You need to be in the project directory where the
solver is running when starting the Interact utility. Otherwise, the solver will not receive the Interact signal.

act.1l7
* You can start the Barracuda GUI from the command-line: barracuda.1l7

* You can see all solver options from the command-line: cpfd.x.17 -help

2 oo
. BARRACUDA
; = VIRTUAL REACTOR ~F A . a1

SIMULATE > UNDERSTAND > OPTIMIZE



Note on Text Editors in Windows

* The default text editor in Windows is Notepad which only reads and writes DOS-based end-of-line
(EOL) characters. Cygwin, however, requires UNIX-based EOL characters. This difference can create
confusion when creating scripts in Notepad, which then need to be run in Cygwin.

* The best solution is to install a more advanced text editor, such as Notepad++, which will read and
write Unix-based EOL characters.

* If basic Notepad must be used in Windows for creating scripts, two separate utilities are required
for converting the EOL characters between DOS and UNIX.

* Use unix2dos.exe to prepare a script for editing in Notepad:

unix2dos.exe myscript.sh <——— Converts DOS EOL characters to UNIX

notepad.exe myscript.sh <+— QOpens the script in notepad

* Use dos2unix.exe to prepare a script for running in Cygwin:
dos2unix.exe myscript.sh <« Converts UNIX EOL characters to DOS

./myscript.sh <+— Executes the script

SIMULATE > UNDERSTAND > OPTIMIZE

42



