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Three fundamental granular flow experiments and CPFD predictions
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Abstract

Granular flow of three granular flow experiments is predicted by a computational particle fluid dynamic CPFD numerical scheme
in three dimension using the true particle size distribution. The experiments are simple which show the characteristics of particle flow
which differs from fluid flow. The experiments are flow of particles in sedimentation, a U-tube and from a hopper. The CPFD method
models the fluid as a fluid and models the particles as discrete particles (material description). The CPFD method is a form of
discrete element method, where each particle has three-dimensional forces from fluid drag, gravity, static–dynamic friction, particle
collision and possibly other forces. However, unlike DEM models which calculate particle-to-particle force by a spring–damper model
and direct particle contact, the CPFD method models collision force on each particle as a spatial gradient. The CPFD numerical
method predictions compare well with all three experiments with no adjustment of parameters or empirical correlations between
calculations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The flow of granular material can be considerably different
than a fluid. A good example is the hour glass. The hour glass
works as a useful measure of time because the particle flow
through the orifice is constant. If instead, a fluid were used in
the hour glass, the flow rate is initially high because of a
hydrostatic head, and the flow tapers off as the hour glass
empties of fluid. Presented here are basic granular flows which
show the characteristics of particle flow. Many of the examples
are not described by a fluid or because of the influence of
particle size or density distribution, are not effectively
calculated by a pseudo-continuum particle model. The exam-
ples are simple which allows the granular behavior to be seen
and not lost in complex geometry or boundary conditions.

The granular flow is predicted with a computation particle
fluid dynamic (CPFD) numerical method. The numerical
method is in the direct element method (DEM) class of
solutions. Continuum or fluid models (Eulerian reference
frame) readily allow modeling of forces using spatial gradients
of properties [1,2]. However, modeling a distribution of types
and sizes of particles complicates the continuum formulation
0032-5910/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
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because separate continuity and momentum equations must be
solved for each size and type [2,3]. Further the pseudo-
continuum approximation may be taxed in modeling solid
granular material as a continuum. The Lagrangian or material
description for the particle phase (DEM fits into Lagrangian
solution methods) allows economical solution for flows with a
wide range of particle types, sizes, shapes and velocities [4] and
has no numerical diffusion associated with an advection
operator. Because of the computational complexity of calculat-
ing dense particle–particle interactions, traditional DEM
methods have been limited to on the order of 2×105 particles
and are often restricted to two-dimensional solutions and often
without a fluid phase. The calculation method by Snider [5]
described here and applied to granular flow problems in this
paper uses features from the Eulerian method and features from
the material or Lagrangian method. This computational particle
fluid dynamic (CPFD) method models the fluid as a fluid and
models the particles as discrete particles (material description).
The CPFD method is a form of discrete element method, where
each particle has three-dimensional forces from fluid drag,
gravity, static–dynamic friction, particle collision and possibly
other forces. However, unlike DEM models which calculate
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Fig. 1. Particles on an inclined plane and on packed bed.

Fig. 3. CPFD predicted sedimentation rate compared to measured data by Davis
et al. [11].
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particle-to-particle force by a spring–damper model and direct
particle contact, the CPFD method models collision force on
each particle as a spatial gradient. A CPFD particle, in dense
particle flow, knows it will hit another particle(s) but it does not
care which other particle(s) it hits. Similar for all other particles.
O'Rourke and Amsden [6] introduced the concept of applying
spatial gradients to discrete particles in chemically reacting
flow. O'Rourke later extended the idea to calculating the
particle normal stress from a spatial gradient [7], and Snider et
al. [8] applied a two-dimensional discrete particles method to
sedimentation using an implicit particle normal stress as a
Fig. 2. CPFD calculated particle sedimentation.
function of particle volume fraction. Snider [5] developed the
CPFD numerical scheme which includes features such as a
subgrid particle stress model, particle forces such as particle
friction, the tightly coupled solution of fluid and particle
momentum and energy equations, and fast accurate solution
methods for three dimensions. The body of this work is
included in the Arena-flow® and Barracuda™ commercial
software.

Three experiments which illustrate granular flow behavior
are presented. The flows are particle sedimentation, flow from a
hopper, and particles flowing into a U-tube. The CPFD method
is applied to the three cases. All calculations are run in three
dimensions and use the proper particle densities and particle
size distribution (PSD).

2. CPFD governing equations

The CPFD method solves the fluid and particle momentum
equations in three dimensions The fluid is described by the
Navier–Stokes equation with strong coupling to the discrete
particles. The particle momentum equations are ordinary
differential equations with coupling to the fluid. The CPFD
solution as applied in Arena-flow® and Barracuda-CPFD™ is
aimed at solving commercial problems, which are generally
physically large systems. In the CPFD scheme, a numerical-
particle is defined where particles are grouped with the same
properties (species, size, density, etc.). The numerical-particle is
a numerical approximation similar to the numerical control
volume where a spatial region has a single property for the fluid.
Using numerical particles, large commercial systems containing
billions of particles can be analyzed using millions of
numerical-particles.
Table 1
Hindrance functions multiplied times Stokes equation

Gidaspow and Ettehadieh [12] Cd=θf
−2.65

Richardson and Zaki [13] Cd=θf
−4

Barnea and Mizrahi [14] Cd ¼
ð1þ h1=3p Þ

h2f
exp

5hp
3hf

� �



Fig. 4. Experimental hopper.

38 D.M. Snider / Powder Technology 176 (2007) 36–46
The volume average two-phase incompressible continuity
equation for the fluid with no interphase mass transfer is

∂hf
∂t

þjdðhfuf Þ ¼ 0; ð1Þ

where uf is the fluid velocity and θf is the fluid volume fraction.
The volume average two-phase incompressible momentum
equation for the fluid is

∂ðhfuf Þ
∂t

þjdðhfufuf Þ ¼ −1
qf

jp−
1
qf

F þ hfg þ 1
qf

jds; ð2Þ

where ρf is fluid density, p is fluid pressure, τ is the macroscopic
fluid stress tensor, and g is the gravitational acceleration. F is
the rate of momentum exchange per volume between the fluid
and particles phases. The fluid phase is compressible or
incompressible (incompressible equations shown), and fluid
and particle phases are isothermal.

The particle acceleration is

du
dt

¼ Dpðuf−upÞ− 1
qp

jpþ g−
1

hpqp
jsp þ FS ð3Þ

where up is the particle velocity, ρp is the particle density, g is
gravity and τp is the particle normal stress. The terms represent
acceleration due to aerodynamic drag, pressure gradient, gravity
and gradient in the interparticle normal stress, τp. The particle
friction, FS is opposite and limited to the relative particle
motion, and only becomes important at very low particle flow at
near close pack.

Particle properties are mapped to and from the Eulerian
grid. The interpolation operator is the product of interpolation
operators in the three orthogonal directions. For a particle
located at xp, where xp= (xp,yp,zp), the x-directional compo-
nent of the interpolation operator to grid cell i, is an even
function, independent of the y and z coordinates, and has the
properties.

Sxi ðxpÞ ¼
0 xi−1zxpzxiþ1

1 xp ¼ xi
ð4Þ
The x and y interpolation operators have a similar form. The
particle volume fraction at cell ξ from mapping particle
volume to the grid is

hpn ¼ 1
Xn

X
l

Np

XpnpSpn ð5Þ

where Ωξ is a grid volume, Ωp is particle volume, np is the
number of particles in a numerical particle, and the summa-
tion is over all numerical particles, Np. From conservation of
volume, the sum of fluid and particle volume fractions equals
unity, θp+θf =1.

The implicit numerical integration of the particle velocity
equation is

unþ1
p ¼

unp þ Dt Dpunþ1
f ;p − 1

qp
jpnþ1

p − 1
qphp

jsnþ1
p þ g þ FS

h i
1þ DtDp

ð6Þ

where uf,p
n+1 is the interpolated fluid velocity at the particle

location, ∇τp
n+1 is the interpolated pressure gradient at the

particle location, ∇pp
n+1 is the interpolated particle stress gra-

dient at the particle location, Dp is the drag coefficient. Particles
are grouped into numerical-particles each containing np par-
ticles with identical properties located at position, xp. The new-
time particle location is

xnþ1
p ¼ xnp þ Dtunþ1

p : ð7Þ

The interphase drag coefficient is

Dp ¼ Cd
3
8

qg
qp

juf−upj
r

; ð8Þ

where

Reb1000 Cd ¼ 24
Re

ð1þ 0:15Re0:687Þh−2:65f

Rez1000 Cd ¼ 0:44h−2:65f

ð9Þ

The Reynolds number is defined as

Re ¼ 2qf juf−upjr
lf

; ð10Þ

where μf is the gas viscosity and the particle radius is

r ¼ 3Xp

4k

� �1=3

ð11Þ

To check the sensitivity of drag on sedimentation, the
sedimentation calculations were run with three different drag
models.

Particle-to-particle collisions are modeled by a particle
normal stress. The particle stress is derived from the particle
volume fraction which, in turn, is calculated from particle



Fig. 5. Particle size distribution. The granular material is sand with density
2760 kg/m3.
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volume mapped to the grid. The particle normal stress model
used here is

s ¼ Psh
b
p

max½ðhCP−hpÞ; eð1−hpÞ� ; ð12Þ

where ε is a small number on the order of 10−7 to remove the
singularity. The close-pack limit is somewhat arbitrary and
depends on the size, shape and ordering of the particles.
Therefore the solution method allows the particle volume
fraction, at times, to slightly exceed close pack which is
physically possible considering that shifting or rearranging of
granular materials may occur. The particle normal stress is
mapped and applied to discrete particles. Because particles have
subgrid (no grid) behavior, the application of the normal stress
gradient to a discrete particle is modeled and accounts for the
particle properties and whether the particle is moving with or
against the stress gradient.
Fig. 6. Emptying fro
A characteristic of granular flow is that particles stack to
form a pile with an “angle of repose” describing the pile's slope.
The particle normal stress model inherently gives an angle of
repose. Fig. 1 illustrates particles at the surface of a packed bed.
The movement into the bed is stopped by the vertical
component of the particle normal stress, but the particle is
moved sideways by the horizontal component of the particle
normal stress. If particles come to rest, the horizontal
component of the particle stress gradient continually forces
particles sideways with a diminishing force as the angle of
repose decreases. Without a stabilizing surface force, such as
static friction or surface tension, the particle normal force, over
a long time, will eventually collapse the granular pile.

Static friction from first principles can only be done for the
most simple case, and methods, such as DEM use a static
friction model to capture the particle interface physics. The
complexity increases by orders of magnitude when the surfaces
are not planes such as contact between irregular solids. The
complexity and computational-work further increases for three-
dimensional DEM modeling. Average static and dynamic
contact friction is modeled well as a friction force proportional
to the solid normal force, FN,

FS ¼ csFN ð13Þ

The proportionality constants, cs, is the experimentally
determined coefficient of friction. Within a static particle bed
where gravity and enduring contact (particle pressure) are the
dominant forces, a static frictional force model [18] has a
straight forward implementation to each particle. The normal
force of solid-on-solid is calculated from the local particle
normal particle stress with the partial redirection of force from
mini-arching between solids being modeled by a Janssen
coefficient [15]. A numerical benefit of the static friction within
the bed is to damp small, high frequency solids motion (jitters)
m hopper tank.



Fig. 7. Calculated particle field during hopper tank emptying.
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produced by the very large, non-linear particle pressure gradient
at close pack.

The static friction is more difficult to implement on a
complex three-dimensional surface of solids. The dominant
force may not be gravity which conveniently has a constant
direction, but the normal force to a packed region of solids may
depend on motion of the solids. The same basic model, used
within a static packed bed, is applied to the more complex free
surface and directionally non-constant normal-forces. A particle
on an inclined surface can slip or roll and possibly bounce down
the surface. Particles can also form bridges or can wedge into
crevices which retard motion, and bonds can form between
particles such as those from surface tension which restrict
particle flow. While the mechanisms for rolling, slipping and
bouncing of particles along the incline are different; the process
Fig. 8. Static pressure in the hopper prior to emptying.
is modeled as an average friction force which is proportional to
the particle normal force, Eq. (13).

In applying the CPFD method, a granular-material slope is
estimated in the direction of the particle motion. The slope is
determined from the particle volume fraction in a plane of cells
where the particle resides and the particle volume fraction in the
next grid—plane up or down depending on whether the particle
force is positive or negative, respectively. The friction force is
the friction-coefficient times the normal component of the
Fig. 9. Calculated particle flow where particles are colored by local volume
fraction.



Fig. 10. Two layers of colored particles in the hopper. The view is a center slice through the vessel.

Fig. 11. Comparison of measured and calculated particle flow rate from hopper.

41D.M. Snider / Powder Technology 176 (2007) 36–46
particle's forces relative to the material slope. The friction force
exponentially decays with decreasing volume fraction and
exponentially decays with increasing relative particle velocity
which provides for the difference between static and dynamic
friction. For flowing particles or particles not near close pack,
the static friction force goes to zero.

The conservation equations are approximated and solved by
finite volumes with staggered scalar and momentum nodes. The
fluid momentum equation implicitly couples fluids and particles
through the interphase momentum transfer. The interphase
momentum transfer at momentum cell ξ is

Fnþ1
n ¼ 1

Xn

X
p

Sn Dpðunþ1
f ;p −unþ1

p Þ− 1
qp

jpnþ1
p

" #
npmp; ð14Þ

Particle drag and properties are interpolated to the grid. If a top
hat interpolation is used, the fluid velocity at particle position xp
is either zero or the node velocity. If a bilinear or other
interpolation is used, the fluid velocity at particle position xp
includes the node velocities in support of the interpolation.

The drag force is particle dependent, i.e. depends on particle
size, shape and possibly other geometrical properties. Further,
each particle sees a unique fluid property (viscosity, velocity,
etc) at a particle location from an interpolation from 8 Eulerian
cells in support of the interpolation operator. This is also true of
the fluid phase in that the local drag of each particle is included
in the fluid equation (millions of numerical particles). The drag
force on fluid in an Eulerian control volume is from
interpolation of drag force from particles in 27 Eulerian control
volumes in support of the interpolation operator. The inclusion
of particle momentum also includes the local pressure gradient
at particle locations. Further the particle momentum is an



Fig. 12. U-tube experiment dimension and particle flow at the slider shim.
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implicit coupling in the fluid phase which provides a robust
solution, especially for small particles which produce very high
drag. The coupling of fluid and particles gives a subgrid
influence in the Eulerian solution. One easy thought on the
subgrid behavior is the motion of a large and small particle
within an Eulerian control volume. The larger particle may be
dominated by the body force and move down while the small
particle next to the large particle may be dominated by the
Fig. 13. Solids flow in the vertical
aerodynamic drag and move upward. This subgrid particle
motion is coupled into the fluid phase.

Mass continuity is from the material motion of particles. The
fluid mass is calculated from volume continuity, θf =1−θp. A
SIMPLE solution scheme is used to adjust pressure and fluid
velocity to satisfy fluid continuity. Velocity and pressure
correction dependence, estimated from the momentum equation
are entered into the fluid continuity equation, giving a semi-
arm of the U-tube experiment.



Fig. 14. CPFD calculated U-tube filling.
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implicit coupling of mass and momentum in a pressure
correction equation. The pressure equation is solved and fluid
pressure and velocities are corrected to satisfy continuity.

3. Sedimentation

Homogeneous, batch sedimentation begins with a uniform
distribution of suspended particles in a container. If left alone,
the particles separate from the fluid into distinct regions of
particles that depend on the particle densities and sizes. A
suspension with a variety of particle sizes and densities will
form multiple regions, where each region above the previous
region contains one less species, where a species is a group of
particles with near the same particle size and density. The top of
the vessel will be clear fluid (providing particle densities are
greater than the fluid density) and the bottom of the vessel will
contain all species. In cases where there is a large variation
between sizes and/or density of species, the regions are distinct
and separated by strong concentration gradients Davis and
Acrivos [9] and Al-Naafa' and Selim [10] provide reviews of
experiments and analysis of polydisperse suspensions.

The settling of one or a few particles size can be predicted by
a Eulerian particle solution. The Eulerian solution becomes far
more difficult with more than a few particle sizes or densities,
because of the increased computation expense for solving many
conservation equations. For a wide distribution of particle sizes,
using an average particle size will not give a good prediction of
the settling rate. The CPFD method has virtually unlimited size



Fig. 15. Particle flow in the U-tube section.

44 D.M. Snider / Powder Technology 176 (2007) 36–46
and density of particles and can capture the settling physics well
whether there are few or many particle sizes.

The bimodal suspension of a glass beads experiment given by
Davis et al. [11] was calculated by Snider [8] and again in this
study in three dimensions using the CPFD method. The vessel is
vertical and the fluid density and viscosity are 992 kg/m3 and
0.0667 kg/(m-s), respectively. The small glass bead density is
2440 kg/m3, and beads range in diameter from 125 to 150μm. The
larger bead density is 2990 kg/m3 and beads range in diameter
from 177 to 219 μm. The calculation uses a uniform random
distribution within the reported experimental size ranges. Initial
volume fractions for the small and large beads are 3% and 1%,
respectively.

Fig. 2 shows the calculated particles which separate into
three distinct sedimentation regions. There is an interplay of
heavy, large particles and light, small particles. The heavier
particles have a larger gravity force, and the smaller particles
have a larger fluid drag. In the experiment (and calculation), the
combination of small, light particles are in the first fluid–
particle layer. The second particle layer contains both size and
density particles. With different particle densities and sizes,
there can be sedimentation with the heavier particles in the first
particle layer, and heavy and lighter particles in the lower
particle layer, depending on sizes and densities. In Fig. 2, the
layers are distinct, but there is a sight blurring at interfaces. This
slight smearing at the interface is because a normal distribution
of particle size about the experiment size range is used. There
are small particles with slightly higher drag that slightly
separate from the bulk-particles at the second interface.

The predicted rate of sedimentation compared to measured
data are shown in Fig. 3. As one might expect, the predicted
sedimentation rate depends on the drag correlation. To gauge
the influence of drag models, three calculations are shown using
three drag hindrance models which are listed in Table 1. All
three drag models gave a good comparison with measured data.
The CPFD calculation was for a bimodal suspension experi-
ment, but could have as easily been applied to suspension of
many different size and density particles. Sedimentation of
particles with narrow size and density ranges give distinct
layers. More important for commercial applications is the
sedimentation of solids with a wide distribution in particle sizes
and/or densities. The CPFD method would accurately calculate
the particle settling of these commercial applications where a
pseudo-continuum calculation using one or maybe two average
particle size would not fare well.

4. Hopper flow

The complex flow in the seemingly simple hopper has been
studied extensively over the years. Early work by Janssen [15]
and others experimentally showed that a granular material
exerts a lateral force on bin walls, but the force is far less than a
fluid hydrostatic pressure force and eventually becomes bed-
depth insensitive. Empirical or simple force balances models
have been the primary method to predict the particle discharge
in commercial hoppers. Jenike [16] used a steady-state force
balance on particles and the hopper wall to model the hopper
flow. Beverloo et al. [17] and Johanson [18] provide two simple
models to predict hopper discharge rates. Many of the fluid
solutions to particle flow are two-dimensional, and most DEM
predictions of hopper flow have been two-dimensional where
particles are modeled as rods or the fluid is neglected. With
increased computation power and better algorithms, more three-
dimensional DEM calculations are being presented [19,20].

The lab-scale hopper experiment is illustrated in Fig. 4. The
hopper connects to a short discharge tube. The fluid is air, and
the granular material is sand from two manufactures. The sand
density is 2760 kg/m3, and the particle size distributions are
shown in Fig. 5. The emptying of the hopper into a graduated
cylinder is filmed, and knowing the frame rate and the level in
the graduated cylinder, the flow rate from the hopper is
calculated. The measured solid volume is both particles and air,
and to get the solid flow rate, the measured volume is multiplied
by the particle close-pack volume fraction of 0.64.

Fig. 6 shows time-frames of the hopper as it empties. A cone
depression forms at the top, and the depression remains
relatively constant during the emptying. The hopper experiment
shown in Fig. 6 empties into a container which fills, and the



Fig. 16. Detail of CPFD calculated sand flow in a U-channel.
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hopper does not completely empty. The majority of other tests
completely empty the hopper. Fig. 7 shows the CPFD predicted
emptying of the hopper with a backfill stopping the particle flow
which matches the experiment. The agreement between
calculated and measured appearance during emptying is good.

Particles are not forced out of the bottom of the hopper by a
hydrostatic “head” of particles which would give the discharge
rate dependent on bed height. A purely fluid model for sand
without proper modeling of particle forces would incorrectly
give a high hydrostatic pressure at the bottom of the tank. The
CPFD calculated pressure in the tank, prior to opening the
bottom hole, gives the correct pressure which is a hydrostatic
column of air as shown in Fig. 8.

Fig. 9 shows particles during the emptying of the hopper
with the front of the hopper cut-away. The particles are colored
by local solids volume fraction. Dark-brown is close pack.
Particles, emptying from the bottom, produces a low volume
fraction region allowing particles above to flow into the void
(driven by gravity). As time progresses, a kinematic volume
fraction wave (dialation) moves up through the center of the
hopper tank. Fig. 10 shows the hopper with two initial layers of
colored particles at two levels in the hopper. During the hopper
emptying, particles away from the center remain relatively
stationary until the central bed-level drops, and allows particles
across the bed to move into the central cone. Fig. 11 compares
the CPFD predicted discharge rate with the measured rate. The
predicted particle flow rate compares well with the measured
flow rate, and the discharge rate is relatively constant as it
should be.

5. Particles flow in a U-tube

Awell known behavior of particles is that they stack with an
“angle-of-repose”. It is also difficult to fill a container with
granular material when the container has an irregular shape or
has a complex flow channels. A fluid, on the other hand will
completely fill the most complex geometry container up to a
hydrostatic level. The granular flow behavior is illustrated in a
U-tube. The U-tube is shown in Fig. 12.

Sand is placed on top of a shim in the long vertical arm. The
sand is Badger 5574 with a density of 2760 kg/m3, and a
particle size distribution given in Fig. 5. The shim is quickly
removed and sand is filmed at 1000 frames per second as it falls
into the U-section.

Fig. 12 shows the initial particle flow in the upper section
under the shim slot. The rectangular tube has a burr at the cut for
the shim slot, and the initial removal of the shim and the burr
produced a non-uniform particle flow pattern. The burr was not
intended to be part of the experiment, but because it was there, it
was included in the CPFD calculation. In general, the falling of
dense material through a light fluid will give instabilities similar
to Rayleigh–Taylor flow. Fig. 13 shows the measured transient
flow of solids in the vertical arm, and Fig. 14 shows the CPFD
calculated flow of sand in the U-tube. The calculation also
includes the burr at the slider slot which produces similar flow
patterns as observed in the experiment. Both the appearance and
rate of solid flow compares well to the experiment.

Fig. 15 shows measured sand flowing into the bottom of the
U-tube. The last frame in Fig. 15 is the final, static sand
distribution which is a partial fill of the U-bend. Fig. 16 shows
the CPFD calculated filling in the U-bend which compares well
with the measured data. If particles are modeled as a fluid, the
fluid would fill both arms to a constant level (manometer),
predicting an incorrect behavior for particle flows. The ability to
predict this phenomenon is essential to many industrial
applications, for example the filling of sand-cores widely
employed in metal castings.

6. Concluding remarks

Three experimental examples of easy-to-comprehend gran-
ular flow are presented which are not modeled or not modeled
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well by a pseudo-continuum approximation for particle flow.
The flows are predicted with a computational particle fluid
dynamic (CPFD) numerical scheme, in three dimensions using
the correct PSD. The CPFD calculations gave excellent
prediction of all three experiments. The calculations use the
same numerical scheme for all cases with no adjustment in the
method or models to account for a special characteristic of the
particle flow.

The accurate prediction of the particle flow in this study is
important for two reasons. First it illustrates and verifies the
CPFD calculation ability for predicting particle flow. Second,
any numerical scheme needs to be tested on fundamental
problems with known behavior before it can be applied to large
commercial problems. By predicting fundamental physics of
granular flow, confidence is gained that the numerical tool
accurately predicts large complex systems where there is little or
no measured data.
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