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A new model is presented for numerical simulations of collisional transfer of mass, momentum and
energy in gas/liquid/solid fluidized beds. The mathematical formulation uses a collision model similar to
that of Bhatnagar, Gross, and Krook (BGK), in a particle distribution function transport equation, in order
to approximate the rates at which collisions bring about local equilibration of particle velocities and the
masses, compositions, and temperatures of liquid films on bed particles. The model is implemented in
the framework of the computational-particle fluid dynamics (CPFD) numerical methodology, in which the
particle phase is represented with computational parcels and the continuous phase is calculated on Eule-
rian finite-difference grid. Computational examples using the Barracuda� code, a commercial CFD code
owned by CPFD Software, LLC, show the ability of the model to calculate spray injection and subsequent
liquid spreading in gas/solid flows.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Gas/liquid/solid fluidized beds are used in fluid cokers to convert a
heavy hydrocarbon feed into lighter hydrocarbon components, gases,
and coke (Song et al., 2004; Gray et al., 2004). The liquid hydrocarbon
feed is introduced as a spray that wets hot solid bed particles. The
heated feed then reacts in the liquid phase to form lighter weight
components, coke, and, possibly, some vapor; and the lighter-weight
components vaporize at the surfaces of liquid films on the particles.
The solid bed particles provide a large surface area upon which rapid
heat transfer to the liquid hydrocarbon can occur. Gas/liquid/solid
beds are also used in fluidized bed granulators to produce solids
from liquid products such as solutions and suspensions (Heinrich
et al., 2003).

In such a fluidized bed, collisions between liquid spray droplets
and bed particles, and between the wet bed particles themselves,
are the mechanisms whereby the liquid spreads over the particles'
surfaces. More generally, collisions result in mass, momentum, and
energy transfer between particles and cause a variety of associated
physical effects. Momentum transfer results in the damping of rela-
tive motion between particles, which, in turn, reduces the collision
frequency. In addition to spreading the liquid over the particles' sur-
faces, collisional mass transfer results in mixing of liquid residing on
different particles and to a tendency toward local uniformity of liquid
chemical composition and liquid temperature on different particles.
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In this paper we document a unified model for collisional
mass, momentum, and energy transfer between bed particles in
a gas/liquid/solid fluidized bed. The mathematical model extends
the equations of the multiphase particle-in-cell (MP-PIC) method
(Andrews and O'Rourke, 1996; Snider et al., 1998; Snider, 2001) by
including collision terms on the right-hand side of the transport
equation for the single-particle distribution function for the bed par-
ticles. The form of the collision terms is the same as in the Bhatnagar,
Gross, and Krook (BGK) model for collisions in the Boltzmann equa-
tion of gas dynamics (Vincenti and Kruger, 1975). In the BGK model,
the effect of collisions is represented by a simple relaxation term on
the right-hand side of the Boltzmann equation that is the difference
between the current value of the molecular distribution function
and the equilibrium Boltzmann velocity distribution, divided by a
molecular collision time. In this work, the equilibrium distributions
involve delta functions of particle properties, reflecting the fact that
particle collisions damp fluctuations in particle properties.

An effect related to particle collisions is already included in the
MP-PIC equations, and this is the effect of an isotropic particle col-
lisional pressure (Andrews and O'Rourke, 1996; Snider et al., 1998;
Snider, 2001). Gradients in this pressure result in particle acceler-
ations that prevent particle volume fractions from exceeding their
close-pack limit. Particle collisions also result in particle stresses
that depend either linearly, or quadratically, on gradients in particle
velocity fields (Savage and Jeffrey, 1981; Lun et al., 1984). In contrast,
the new collision effects in this study are purely local in the sense
that they affect only the local distributions of particle properties, and
do not involve spatial gradients of particle properties. We also note
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that in previous work the effects of particle collisions have been rep-
resented in numerical models for dilute particle flows through inclu-
sion of a binary collision integral (O'Rourke, 1981) in the transport
equation for the particle distribution function, but models based on
just binary collisions are inappropriate for the dense particle flows
of interest in this study, where n-body collisions with n>2 are im-
portant.

The situation in gas/liquid/solid fluidized beds is more compli-
cated than in gas dynamics because, in addition to collisions causing
particle velocities to relax to an equilibrium value, particle collisions
cause transfer and mixing of liquid film mass and, consequently, re-
sult in equilibration of liquid film masses, chemical compositions,
and film temperatures. To represent this situation, we assume that
there are two BGK-like terms on the right-hand side of the particle
distribution function, with different equilibrium distributions and
different collisional time scales. One time scale is associated with
achieving particle velocity equilibrium with other particle proper-
ties frozen, and the other time scale is associated with achieving full
equilibration of film masses, velocities, compositions, and tempera-
tures.

The two collision time scales are both proportional to the average
time between collisions experienced by an individual particle. Our
expression for the time between collisions is intended to apply for all
particle concentrations, from the dilute to the close-packed particle
limits. In the dilute particle limit, we use reasoning analogous to that
used in the kinetic theory of dilute gases to derive a collision time
scale. In the close-packed particle limit, our expression for the time
between collisions properly goes to zero.

The two collision time scales of the BGK-like terms differ because
of the differing effectiveness of collisions in bringing about particle
velocity equilibrium and liquid film composition and thermal equi-
librium. Collisions tend to bring about velocity equilibrium primarily
because of the inelastic nature of particle collisions. Collisions be-
tween solid particles reduce the kinetic energy of relative motion
because of the small solid deformations and energy dissipation that
result from collisions. The energy dissipation in collisions is greatly
enhanced when surface films are present because collisional forces
cause liquid film motions and surface deformations, which lead to
more energy dissipation than in the case of solid particle collisions.
Collisions between particles with films can also lead to particle co-
alescence (O'Rourke, 1981), an effect that is ignored in this study.

In contrast to the above velocity equilibration mechanisms, colli-
sional equilibration of the liquid film properties is primarily caused
by the exchange, or transfer, of liquid mass between particles that
occurs when particles collide. Collisional forces cause liquid to be
moved between particles, and, if there is sufficient force in the colli-
sion, the liquid can splash and adhere to the surfaces of neighboring
particles. Liquid transferred from one particle to another mixes with
the liquid on its new particle, causing the liquid temperatures and
compositions on colliding particles to be more nearly equal.

In this work, we assume that at equilibrium the ratio of the liquid
to solid mass of individual wet particles is constant which is equal to
the local ratio of the total liquid to total solid mass density. While it
is intuitively clear that liquid film will migrate from particle to par-
ticle as a result of collisions, it is not clear what the equilibrium dis-
tribution of liquid film masses will be. It can easily be seen that our
assumption is equivalent to the assumption that, at equilibrium, the
ratio of the liquid film thickness to solid particle radius is locally a
constant which is independent of solids radius. Thus, for example, a
solid particle whose radius is twice that of another solid particle will
have a liquid film that is twice as thick at equilibrium. A necessary
condition for our assumption to be true is that inertial forces domi-
nate over surface tension and viscous forces in the collisions, so that
the equilibrium distribution of liquid mass over the surfaces of solid
particles assumes a form that is independent of these liquid mate-
rial properties. Our assumption contrasts with, and improves upon,

the assumption made by some authors of a constant film thickness,
independent of the radius of the solid particle upon which the film
adheres (Song et al., 2004).

In our numerical method, integration of the collision terms is per-
formed within the framework of the computational particle method
used by MP-PIC (Andrews and O'Rourke, 1996; Snider et al., 1998;
Snider, 2001). In the MP-PIC method, the continuous distribution
function of particle properties, which is obtained by a turbulence
averaging procedure, is numerically approximated by a discrete dis-
tribution of Lagrangian computational parcels, each of which repre-
sents a number of physical particles with identical properties. In this
study, we take the properties of physical particles to be their loca-
tion, solid mass, the masses of the chemical species in their liquid
film, particle velocity, solid temperature, and liquid film tempera-
ture. We assume that the temperature and chemical composition
within each particle's film is uniform, but that the film temperature
can differ from the solid particle temperature.

In our numerical method for integrating the collision terms, be-
cause of computer memory limitations we keep the same com-
putational parcels, with the same number of physical particles in
each parcel, but update the particle properties associated with these
parcels. The numerical calculation of collision effects is done on a
cell-by-cell basis and is split from the calculation of other particle
property changes. We determine the new parcel properties by us-
ing an implicit approximation to the collision equations to obtain
a provisional discrete distribution in which parcel numbers are in-
creased. Then, we “numerically” agglomerate parcels in the provi-
sional distribution into the new parcels in such a way that particle
mass, momentum, and energy are conserved.

The MP-PIC method is used for calculating particle dynamics in
the general purpose computational-particle fluid dynamics (CPFD)
numerical methodology. The CPFD numerical methodology is incor-
porated in the commercial Barracuda� code, which is the platform
for implementing the collision model in this paper.

The remainder of this paper is organized as follows. In the next
section, we give the equations of the extended MP-PIC method that
involve the new collision terms. A particle distribution function for
gas/liquid/solid fluidized beds is defined, the transport equation for
this distribution function is given, and the two equilibrium distri-
butions and collisional time scales discussed above are specified. In
Section 3, we demonstrate several properties of the collision terms,
including the fact that they conserve the mass, momentum, and
enthalpy of the particle phase. Next, we document the numerical
method used to integrate the collision terms. In the final section, we
present examples of fluidized bed calculations using the new colli-
sion model, including calculations of gas/solid and gas/liquid/solid
beds.

2. MP-PIC equations with collisions

The dynamics of the particle field is obtained in the MP-PIC
method by solving for the particle distribution function f . In this
section we define f and give its transport equation with the new
BGK-like collision terms. To define the collision terms, which are the
main subject of this paper, we must specify two equilibrium particle
distributions and the relaxation times corresponding to these dis-
tributions. Considerable time is spent in this section presenting and
motivating the expressions we use for these collision quantities.

The distribution function f is the local number density of particles
times the local probability distribution function of particle properties
that are important in our particular application. For gas/liquid/solid
fluidized beds, we take as particle properties the mass of the solid
part of the particle Ms; the masses of each of the chemical com-
ponents i in the liquid film on a particle Mf ,i; the particle veloc-
ity uj; the temperature of the solid part of the particle Ts; and the
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temperature of its film part Tf . Thus,

f (xj,Ms,Mf ,i,uj, Ts, Tf , t) dMs dMf ,i duj dTs dTf

is the average number density of particles at spatial location xj and
at time t, with solid mass in the interval (Ms,Ms + dMs), mass of
liquid species i in the interval (Mf ,i,Mf ,i + dMf ,i), Cartesian velocity
component j in the interval (uj,uj + duj), solid temperature in the
interval (Ts, Ts + dTs), and liquid temperature in the interval (Tf , Tf +
dTf ). When an alphabetic letter is used as a subscript in this paper, it
is understood, unless noted otherwise, that the letter runs over all its
possible values. Thus, duj represents du1du2du3, and Mf ,i represents
Mf ,1,Mf ,2, . . . ,Mf ,NS, where NS is the number of chemical species in
the liquid film. For brevity in what follows, we often denote by �j
those independent variables of the distribution function f exclusive
of spatial location xj and time t. Thus, the above expression will often
be written as

f (xj,Ms,Mf ,i,uj, Ts, Tf , t) dMs dMf ,i duj dTs dTf = f (xj,�j, t) d�j. (1)

With NS chemical species in the liquid film, the number of inde-
pendent variables represented by �j in Eq. (1) is NS + 6.

The transport equation for the particle distribution function is

�f
�t

+ �(fuj)
�xj

+ �(f �̇j)

��j
= f eq,u − f

�u
+ f eq,t − f

�t
. (2)

Eq. (2) is derived in an analogous fashion to the derivation of the
Boltzmann equation of gas dynamics (Vincenti and Kruger, 1975).
For each k, the quantity �̇k(xj,�j, t) is the time rate of change of the
value of �k of a particle located at xj with properties �j at time t.

Specification of �̇k does not concern us in this study, but will be the
subject of a future paper documenting our model for gas/liquid/solid
fluidized beds. See Andrews and O'Rourke (1996) for an example of
an expression for u̇j that includes the effects of drag due to particle
motion relative to the continuous gas phase, buoyant forces, gravi-
tational acceleration, and an isotropic inter-particle stress.

The right-hand side of Eq. (2) represents the time rate of change
of f due to particle collisions and is denoted by (�f/�t)coll:(

�f
�t

)
coll

= f eq,u − f
�u

+ f eq,t − f
�t

. (3)

Specification of collision effects in our model requires the defi-
nition of two equilibrium distributions f eq,u and f eq,t and two colli-
sion time scales �u and �t , and we now define these quantities. The
equilibrium distribution f eq,u is the distribution that results if par-
ticle velocities are equilibrated, and the remainder of the particle
distribution remains unchanged. Its definition uses the local mass-
averaged velocity uj,eq, which is defined by

uj,eq =
∫
fMpuj d�k∫
fMp d�k

for each j, (4)

where the total particle massMp includes its solid mass and its liquid
film mass:

Mp = Ms +
NS∑
i=1

Mf ,i. (5)

The integrals in Eq. (4) are over all variables �k and all values of
those variables. In terms of uj,eq, f eq,u is defined by

f eq,u =
[∫

f duj

]
�(uj − uj,eq). (6)

In Eq. (6), the integral is over all values of all particle velocity compo-
nents, and � is the Dirac delta function. We also note our convention
that the product of three � functions is implied in Eq. (6).

The full distribution function f eq,t is the particle distribution that
results when full collisional equilibrium of all particle quantities is
achieved:

f eq,t =
[∫

f dMf ,i duj dTf

]
�(Mf ,i − �iMs)�(uj − uj,eq)�(Tf − Tf ,eq). (7)

Collisions do not affect the solid masses or temperatures. In Eq. (7),
�i is the local ratio of the mass of liquid species i to the solids mass:

�i =
∫
fMf ,i d�j∫
fMs d�j

for each i. (8)

The quantity Tf ,eq is the equilibrium temperature that would result
if all the liquid at point xj at time t were mixed at constant pressure;
Tf ,eq is implicitly determined by the equation

∫
f

NS∑
i=1

Mf ,ihi(Tf ) d�j =
NS∑
i=1

hi(Tf ,eq)
∫

fMf ,i d�j, (9)

where hi is the mass-specific enthalpy of liquid species i.
Eqs. (7) and (8) show that at equilibrium we are assuming that

each particle has the same ratio of mass of liquid film species i to
solids mass, and this assumption requires some comment. Define
quantity � by

� =
NS∑
i=1

�i. (10)

From Eqs. (8) and (10), � is the local ratio of total liquid mass to
solid mass. It is seen from Eq. (7) that we are assuming that, at
equilibrium, the mass fraction of liquid species i is the same for each
particle and is equal to �i/�. This assumption is consistent with our
physical picture that collisions cause mixing of the liquid films on
different particles.

Our model also requires, however, that we make an additional
assumption regarding the distribution of liquid mass on the solid
particles at equilibrium. It is seen from Eqs. (7) and (8) that we are
assuming that at equilibrium, the ratio of total liquid to solid mass
is the same for each particle. While it is not clear how accurate this
assumption is, it is a simple assumption that is consistent with a
physical picture that liquid dynamics during collisions is inertially
dominated, and surface tension and viscous forces do not play a role.

We now turn to the definition of the collision times �u and �t .
These are defined as being proportional to a time between collisions
�coll:

�u = �coll/Ku (11)

and

�t = �coll/Kt , (12)

where Ku and Kt are positive dimensionless factors that may be
functions of local mean particle properties. In this study, we take Ku

and Kt to be functions of �. (See Eq. (61).) Physically, Ku and Kt specify
the efficiency of collisions in bringing about equilibrium, with lower
values of these constants corresponding to larger equilibration times.

The time between collisions �coll is given by

1
�coll

= u′
rms

r32

�cp�p

�cp − �p
. (13)

In Eq. (13), u′
rms is the mass-weighted root-mean-square velocity

fluctuation,

u′
rms =

[∫
fMp(uj − uj,eq)

2 d�k∫
fMp d�k

]1/2

, (14)
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where uj,eq is defined in Eq. (4) and Mp in Eq. (5). The quantity �p in
Eq. (13) is the particle-phase volume fraction:

�p =
∫

fVp d�j. (15)

The volume of a single particle is

Vp = Ms

�s
+

∑
iMf ,i

�f
, (16)

where �s is the solid density which may be a function of Ts, and �f
is the liquid density which may be a function of Tf and the mass
fractions of the liquid chemical species. The quantity �cp is the close-
pack volume fraction of the particle phase. For the present case of
particles composed of both solid cores and liquid films, we use the
expression

�cp = min
[
�cp,s

�p

�s
, 1

]
, (17)

where �s is the solid-phase volume fraction

�s =
∫

f
Ms

�s
d�j (18)

and �cp,s <1 is the known close-pack volume fraction when the par-
ticle phase is composed of pure solids (�p = �s).

The Sauter mean radius (Fan and Zhu, 1998) of the particle dis-
tribution is defined as

r32 =
∫
fr3 d�j∫
fr2 d�j

, (19)

where r is the effective particle radius, r = (Vp/4/3�)1/3. The Sauter
mean radius is the radius of the distribution of equal-sized particles
with the same volume and surface area as the distribution f.

We now give justification for Eq. (13) specifying the time between
collisions. In part, Eq. (13) is motivated by an expression for the
binary collision frequency of equal-sized molecules in a billiard-ball
model for dilute gases (Vincenti and Kruger, 1975). This collision
frequency is shown to be

1
tcoll

= urel4
√
2�r2N, (20)

where urel is the average relative velocity between molecules, r is
the molecule radius, and N is the number density of molecules. By
using the relation �p = 4

3�r3N to eliminate the number density in
favor of �p in Eq. (20), one obtains

1
tcoll

= 3
√
2
urel
r

�p. (21)

Eq. (21) agrees with Eq. (13) in the dilute particle limit if urel is
replaced by u′

rms and r is replaced by r32. For high volume fraction
particle flows, the time between collisions in Eq. (13) is modified so
that tcoll goes to zero as the particle volume fraction approaches the
close-pack limit.

3. Properties of the particle collision terms

We now demonstrate some properties of the new collision
terms. First, we show that, consistent with the physics of particle
collisions, particle mass, momentum, and enthalpy are conserved
by the collision terms. Because particle collisions are inelastic, the

fluctuational kinetic energy of the particle field is not conserved, and
we next derive an equation for the decay rate of fluctuational kinetic
energy due to collisions. Finally, we present an analytic solution of
the collision equations. This solution shows that if there is collisional
equilibrium, then the particle distribution function f is equal to the
full equilibrium distribution f eq,t defined in Eq. (7).

Particle mass, momentum, and enthalpy are conserved by the
new collision terms if the following conditions are satisfied:

∫ (
�f
�t

)
coll

Ms d�k = 0, (22)

∫ (
�f
�t

)
coll

Mf ,i d�k = 0 for each i, (23)

∫ (
�f
�t

)
coll

Mpuj d�k = 0 for each j and (24)

∫ (
�f
�t

)
coll

⎛
⎝Mshs(Ts) +

∑
i

Mf ,ihi(Tf )

⎞
⎠d�k = 0. (25)

The quantity (�f/�t)coll is defined in Eq. (3). Eqs. (22), (23), (24),
and (25) are statements that the time-rate of change due to colli-
sions of solid mass, the mass of liquid species i, momentum in the
j-coordinate direction, and enthalpy, respectively, are conserved in
particle collisions. Satisfaction of these conditions ensures that col-
lision terms do not appear in conservation equations for mass, mo-
mentum, and enthalpy for the particle phase (Andrews and O'Rourke,
1996).

To demonstrate that Eqs. (22)–(25) are true, we first substitute
for (�f/�t)coll in these equations using Eq. (3). The collision times
�u and �t can be brought outside the integrals over �k since their
defining equations, Eqs. (11)–(19), show that these collision times
depend only on xj and time t, and not on any of the coordinates in
�k. It is thus seen that it is sufficient to show that the equilibrium
distributions f eq,u and f eq,t have the same mass, momentum, and
enthalpy as the original distribution f .

As an example, we now demonstrate that f eq,u has the same mo-
mentum in the j-coordinate direction as f. The demonstrations of the
other assertions follow similarly. By using the definition of f eq,u in
Eq. (6), we obtain

∫
f eq,uMpuj d�k =

∫ [∫
f dul

]
�(ul − ul,eq)Mpuj d�k for each j.

(26)

We now perform the integrations over the velocity coordinates in �k
on the right-hand side of Eq. (26) and use the substitution property
of the �-function, to obtain

∫
f eq,uMpuj d�k =

∫ [∫
f dul

]
Mpuj,eq dMs dMf ,i dTs dTf . (27)

The integrations over ul in the inner integral on the right-hand side
of Eq. (27) may be moved outside all terms in the integrand since,
with the exception of f, these terms do not depend on ul:

∫
f eq,uMpuj d�k =

∫
fMpuj,eq d�k. (28)
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Finally, we substitute for uj,eq in the right-hand side of Eq. (28), from
its definition in Eq. (4), to obtain∫

f eq,uMpuj d�k =
∫

fMpuj d�k. (29)

This shows that the distributions f and f eq,u have the same particle
momentum.

We now indicate how one may derive an equation for the time
rate of change due to collisions of the fluctuational kinetic energy
of the particle field. This equation relates the time scale of the de-
cay of fluctuational kinetic energy to the collision times �u and �t ,
and provides some guidance in the choice of these collisional times.
The fluctuational kinetic energy k of the particle field, which is pro-
portional to the so-called granular temperature (Lun et al., 1984), is
defined by

k = 1
2 (u

′
rms)

2, (30)

where u′
rms is defined in Eq. (14). We want to derive an equation for

�k/�t = (�k/�t)coll when �f/�t = (�f/�t)coll. First, it is easy to see that

�
�t

∫
fMp d�j = 0 when

�f
�t

=
(

�f
�t

)
coll

. (31)

To prove Eq. (31), one brings the time-derivative inside the integral,
and uses Eqs. (5), (22), and (23). Next, one shows that∫

f eq,uMp(uj − uj,eq)
2 d�k =

∫
f eq,tMp(uj − uj,eq)

2 d�k = 0 (32)

by using the defining equations for f eq,u and f eq,t and integrating over
the velocity coordinates in �k. Then, by using the defining equations
for k, Eqs. (30) and (14), bringing the time-derivative in the resulting
equation inside the integral, and using the definition of (�f/�t)coll in
Eqs. (3), (31) and (32), one can derive(

�k
�t

)
coll

= −k
(

1
�u

+ 1
�t

)
. (33)

Eq. (33) shows that the time scale for collisional decay of the width
of the velocity distribution is �u�t/(�u + �t).

Similarly, if one defines the width of the mass distribution of
liquid species i by

	2
M =

∫
f (Mf ,i − �iMs)

2 d�k, (34)

it can be shown that when df/dt = (df/dt)coll,

d	2
M

dt
= −	2

M
�t

. (35)

Thus, �t is the time scale for collisional decay in the width of the
mass distributions of the liquid species. Eqs. (33) and (35) show that
the ratio R of the time scale for decay of liquid mass fluctuations, to
the time scale for decay of particle velocity fluctuations, is

R = �u + �t

�u
= Ku + Kt

Kt
, (36)

where Ku and Kt are defined in Eqs. (11) and (12).
Eq. (36) can help guide us in postulating expressions for Ku and

Kt . For example, if, as discussed in the introduction to this paper, we
expect that equilibration of liquid film masses occurs on a longer
time scale than equilibration of particle velocities, then this implies
that Ku >0.

Finally, we show that if there is collisional equilibrium, then f =
f eq,t . We note that it is not immediately clear that this equilibrium
condition is satisfied. By “collisional equilibrium,” we mean that

�f
�t

=
(

�f
�t

)
coll

= 0 (collisional equilibrium condition). (37)

By using the definition of (�f/�t)coll, Eq. (3), in Eq. (37), and solving
for f, one obtains

f = f eq,u/�u + f eq,t/�t

1/�u + 1/�t
, (38)

when there is collisional equilibrium. It appears that Eq. (38) implies
f may not equal f eq,t since, in general, f eq,u � f eq,t . The fact that f
satisfies Eq. (38), however, does imply f = f eq,t , as we now show.
First, one can easily show using Eqs. (6) and (7) and properties of
the �-function that

(f eq,u)eq,u = f eq,u and (f eq,t)eq,u = f eq,t . (39)

By applying the ( )eq,u-operator to each side of Eq. (38) and using
Eq. (39), one can show that f eq,u = f eq,t and, hence that f = f eq,t when
there is collisional equilibrium.

4. Numerical method for integrating the collision terms

We now describe the numerical method for integrating the colli-
sion terms. This particle numerical method is incorporated into the
framework of the MP-PIC method (Andrews and O'Rourke, 1996;
Snider et al., 1998; Snider, 2001), and included within the CPFD nu-
merical methodology in the commercial Barracuda code. We first
give a brief overview of the MP-PIC method. We then detail the nu-
merical integration of the collision terms. Finally, we show that the
particle velocities that result from the collision calculation are, in a
sense, well-behaved if the collision constants Ku and Kt , defined in
Eqs. (11) and (12) are positive.

In the MP-PIC method, the continuous particle distribution func-
tion f is approximated by a discrete distribution fd of computational
parcels. Each computational parcel p represents a numberNp of phys-
ical particles with identical location xj,p and other particle properties
�j,p; thus,

f (xj,�j, t) ≈ fd(xj,�j, t) =
∑
p

Np�(xj − xj,p)�(�j − �j,p), (40)

where the sum is over all particles in the computational domain. The
time evolution of the parcel locations xj,p and other properties �j,p
is obtained by numerical solution of the ordinary differential equa-
tions dxj,p/dt=uj,p and d�j,p/dt= �̇j(xk,p,�k,p, t), where the parcel ve-

locities uj,p are among the properties �j,p and the �̇j are prescribed
functions of the spatial locations, the other particle properties, and
time. The space and time dependence of the functions �̇j are intro-
duced primarily through their dependence on the space- and time-
dependent properties of the continuous phase in which the particles
are embedded. Numerical solution for the continuous phase is by a
time-marching, conservative finite volume method. Communication
between the particle-phase and continuous-phase numerical solu-
tions is accomplished through interpolation functions S
(xj), where
the subscript refers to a computational cell 
 in the finite difference
grid. Thus, for example, the value of continuous phase property Q at
the location of particle p, denoted by Qp, is given by

Qp =
∑



S
(xj,p)Q
, (41)

where Q
 is the computed value of Q in computational cell 
. These
interpolation functions are also used in calculating source terms
to the continuous phase due to mass, momentum, and energy ex-
change with the particle phase. Source term interpolation is done in
such a way that the mass, momentum, and energy of the combined
continuous/particle-phase flow are numerically conserved. The MP-
PIC method is an extension of the so-called stochastic parcel method
for dispersed particle flows (O'Rourke, 1981; Dukowicz, 1980;
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Amsden et al., 1989) to flows in which the particles may occupy
volume fractions up to the close-pack limit.

The strengths of the MP-PIC method are its abilities to simulate
dense particle flows and to include efficiently the effects of a distri-
bution of particle properties, and its numerical accuracy due to the
Lagrangian nature (Dukowicz, 1980) of its numerical solution pro-
cedure for the particle phase.

We now turn to the numerical method for integrating the BGK-
like collision terms within the framework of the MP-PIC method.
The calculation of collisions is split from that of the remainder of the
terms in the transport equation, Eq. (1), for the particle distribution
function f. Thus, we are concerned with approximating the following
equation for f:

�f
�t

= f eq,u − f
�u

+ f eq,t − f
�t

. (42)

We also use an equation for f eq,u that is obtained by applying the
operator ( )eq,u to Eq. (42) and using Eq. (39) and the fact that this
operator and the time derivative commute:

�f eq,u

�t
= f eq,t − f eq,u

�t
. (43)

Eqs. (42) and (43) are approximated in each cell 
 of the compu-
tational mesh. The local discrete distribution f nd,
 in cell 
 is defined
by

f nd,
 =
∑
p∈


Np�(xj − xj,p)�(Ms − Ms,p)�(Mf ,i − Mn
f ,i,p)

× �(uj − unj,p)�(Ts − Ts,p)�(Tf − Tnf ,p), (44)

where the sum is over all particles located in cell 
 and the super-
script n denotes the current, or “old-time,” computed approximation
to a particle property. The particle film masses, particle velocities,
and particle film temperatures will be updated due to the collision
calculation. The particle locations, solid masses, and solid tempera-
tures do not have superscripts since their values do not change due
to the collision calculation. We first calculate the cell values of the
equilibrium velocities uj,eq,
, the equilibrium mass ratios �i,
, parti-
cle film temperatures Tf ,eq,
, and the collision times �u
 and �t
, by
using the local distribution f nd,
 in place of f in Eqs. (4), (8), (9), and
(11)–(18) and integrating over the control volume of computational
cell 
 in addition to all the other particle coordinates in these equa-
tions. The formulas for these quantities are easy to obtain, and we
only give here, as an example, the formula for uj,eq,
:

uj,eq,
 =
∑

p∈
Np(Ms,p + ∑
iM

n
f ,i,p)u

n
j,p∑

p∈
Np(Ms,p + ∑
iM

n
f ,i,p)

. (45)

In terms of the equilibrium particle properties, the equilibrium
distributions f eq,u
 and f eq,t
 in cell 
 are obtained by substituting the
distribution f nd,
, Eq. (44), in place of f in Eqs. (6) and (7), respectively.
Thus,

f eq,u
 =
∑
p∈


Np�(xj − xj,p)�(Ms − Ms,p)�(Mf ,i − Mn
f ,i,p)

× �(uj − uj,eq,
)�(Ts − Ts,p)�(Tf − Tnf ,p) (46)

and

f eq,t
 =
∑
p∈


Np�(xj − xj,p)�(Ms − Ms,p)�(Mf ,i − �i,
Ms,p)

× �(uj − uj,eq,
)�(Ts − Ts,p)�(Tf − Tf ,eq,
). (47)

Note that because of the definitions of the equilibrium properties, it
is easily verified that the distributions f eq,u
 and f eq,t
 have the same
film species masses, particle momentum, and film enthalpy, as the
original distribution f nd,
.

To obtain our approximations for the new or advanced time val-
ues of the particle film masses Mn+1

f ,i,p , particle velocities un+1
j,p , and

particle film temperatures Tn+1
f ,p , we first calculate provisional ap-

proximations f̃ eq,u
 and f̃
 to the advanced-time distributions f eq,u
 and
f nd,
, respectively. These provisional distributions are obtained as so-
lutions to the following linearly implicit approximations to Eqs. (42)
and (43):

f̃
 − f nd,

�t

=
f̃ eq,u
 − f̃


�u

+

f eq,t
 − f̃


�t

(48)

and

f̃ eq,u
 − f eq,u


�t
=

f eq,t
 − f̃ eq,u


�t

, (49)

where �t is the computational time step. One obtains an equation for
f̃
 in terms of known distributions f nd,
, f

eq,u

 , and f eq,t
 by first solving

for f̃ eq,u
 in terms of the known distributions f eq,u
 and f eq,t
 using

Eq. (49), substituting the result for f̃ eq,u
 into Eq. (48), and solving

Eq. (48) for f̃
. After some algebraic rearrangement, we obtain

f̃
 − f eq,t
 =
f eq,u
 − f eq,t


1 + �t/�t

+

f nd,
 − f eq,u


1 + �t/�t
 + �t/�u

. (50)

We note again that since the distributions f eq,u
 and f eq,t
 have the
same masses, momentum, and enthalpy as the distribution f nd,
, from

Eq. (50) it is easily shown that f̃
 has the same masses, momentum,
and enthalpy as f nd,
. It is also clear from Eq. (50) that as the com-

putational time step goes to infinity, the provisional distribution f̃

converges to the equilibrium distribution f eq,t
 , in agreement with the
long-time behavior of the exact solution.

It is impossible to implement numerically the solution in Eq. (50)
in a straightforward fashion because the number of computational
parcels would rapidly grow and computer memory limits would be
exceeded. This is because the straightforward implementation would
require us each time step to split each computational parcel into
three parcels. To see this, we substitute for f nd,
, f

eq,u

 , and f eq,t
 in

Eq. (50) their sums over parcels in Eqs. (44),(46), and (47), respec-
tively. The result is

f̃
 =
∑
p∈


Np�(xj − xj,p)�(Ms − Ms,p)�(Ts − Ts,p)�p, (51)

where

�p = �n

�(Mf ,i − Mn

f ,i,p)�(uj − unj,p)�(Tf − Tnf ,p)

+ (1 − �n

 − �t


)�(Mf ,i − Mn
f ,i,p)�(uj − uj,eq,
)�(Tf − Tnf ,p),

+ �t

�(Mf ,i − �i,
Ms,p)�(uj − uj,eq,
)�(Tf − Tf ,eq,
) (52)

and

�n

 = 1

1 + �t/�u
 + �t/�t

(53)
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and

�t

 =

�t/�t

1 + �t/�t


. (54)

Thus, in f̃
 each parcel of the old-time distribution is split into three:
one with �n


Np particles, one with �t

Np particles, and one with (1−

�n

 − �t


)Np particles.

In place of using the provisional distribution f̃
, we “numerically
agglomerate” the three parcels in each summand of Eq. (51) in such
a way that mass, momentum, and enthalpy are conserved. More
precisely, we take the distribution f n+1

d,
 to have the same form as that
of f nd,
 in Eq. (44) with the same number of particles Np in parcel p

and with the particle film masses Mn+1
f ,i,p , particle velocities un+1

j,p , and

particle film temperatures Tn+1
f ,p determined by requiring that the

film masses, particle momenta, and film enthalpies of each parcel of
f n+1
d,
 be equal to the sum of those of its corresponding three parcels in
Eq. (51). Straightforward calculations give the following new parcel
properties:

Mn+1
f ,i,p = (1 − �t


)M
n
f ,i,p + �t


�i,
Ms,p, (55)

⎛
⎝Ms,p +

∑
i

Mn+1
f ,i,p

⎞
⎠un+1

j,p = �n



⎛
⎝Ms,p +

∑
i

Mn
f ,i,p

⎞
⎠unj,p

+(1−�n

−�t


)

⎛
⎝Ms,p+

∑
i

Mn
f ,i,p

⎞
⎠uj,eq,
,

+ �t



⎛
⎝Ms,p +

∑
i

�i,
Ms,p

⎞
⎠uj,eq,
 (56)

and

∑
i

Mn+1
f ,i,p hi(T

n+1
f ,p ) = (1 − �t


)
∑
i

Mn
f ,i,phi(T

n
f ,p)

+ �t



∑
i

�i,
Ms,phi(Tf ,eq,
). (57)

A question arises concerning the accuracy of the above “numerical
agglomeration” procedure. The numerical solution equation (51)
to the collision equations with BGK-like collision terms involves
the superposition of fractions of the old-time and the equilibrium
distributions. If the collision times are assumed constant, one can
derive an analytic solution to Eqs. (42) and (43) that reveals this
same behavior. Our “numerical agglomeration” procedure does not
take this path to equilibrium, but, instead, uses a single distribution
of the form of Eq. (44) in which particle properties collapse to their
equilibrium values. We argue, however, that the detailed path
to equilibrium is not physically meaningful. It is only physically
meaningful to converge to the equilibrium distribution on the
specified time scales, and this is accomplished by our numerical
approximation.

We conclude this section on the numerical method for calculat-
ing collisions by showing that the advanced-time values Mn+1

f ,i,p , u
n+1
j,p ,

and Tn+1
f ,p specified by Eqs. (55)–(57) lie between their old-time and

equilibrium values if the collision times �u
 and �t
 are both positive.

From Eq. (54), if �t
 is positive, then 0 <�t

 <1. Thus, Eq. (55) shows

that Mn+1
f ,i,p is a positively weighted average of Mn

f ,i,p and the equilib-
rium value of the mass �i,
Ms,p and, thus, lies between these values.

To show that Tn+1
f ,p lies between Tnf ,p and Tf ,eq,
, we regard the

left-hand side of Eq. (57) as a function of film temperature; that is,

define

F(T) =
∑
i

Mn+1
f ,i,p hi(T). (58)

Using Eqs. (55) and (57), 0 <�t

 <1, and the fact that the species

specific heats at constant pressure are positive, one can show that
F(Tn+1

f ,i,p ) lies between F(Tnf ,i,p) and F(Tf ,eq,
), and, hence, that T
n+1
f ,p lies

between Tnf ,p and Tf ,eq,
.

Finally, to show that un+1
j,p lies between unj,p and uj,eq,
, one can

combine Eqs. (55) and (56) to obtain

un+1
j,p = aunj,p + (1 − a)uj,eq,
, (59)

where

a =
�n


(Ms,p + ∑
iM

n
f ,i,p)

Ms,p + ∑
iM

n+1
f ,i,p

. (60)

Using Eq. (60), the assumptions that �u
 and �t
 are both positive, and

the definition of �n

 in Eq. (53), one can readily show that 0 < a <1. It

then follows from Eq. (59) that un+1
j,p lies between unj,p and uj,eq,
.

One characteristic of our model is that total equilibrium is never
reached when decay to momentum equilibrium is achieved before
collision-decay to total equilibrium. At momentum equilibrium, par-
ticles are all moving at the equilibrium velocity and there are no
velocity “fluctuations” which lead to collisions and equilibration of
other particle properties. One can imagine a group of particles mov-
ing together at a constant speed, and without differences in parti-
cle speeds there are no collisions and there would be no transfer of
mass or energy associated with collision. The first example problem
below, where a liquid is injected into dense particle flow, illustrates
this behavior.

5. Example calculations

The above collision model has been implemented in the com-
mercial Barracuda software code, which has been used to perform
two sets of example calculations documented below. In commercial
operations, it is common to inject liquid into a fluidized bed. How-
ever, because of the complex churning and cross flows in fluidized
beds, it is difficult to assess the influence of collision parameters on
fluidized-bed calculations. The first set of example calculations uses
a simple solid–gas flow with solid or liquid injection to isolate and
examine collision behavior. In the second set, liquid injection into a
fluidized bed is predicted and results compared to experiment data.

6. Liquid and solid injection into dense flow in a channel

The example chosen in this section is isothermal gas–solid flow
in the rectangular duct shown in Fig. 1. A uniform distribution of
solids and air enters one end of the channel and exits at the other
end. At the center of the channel entrance, either a liquid or solid
particle jet is injected in the direction of flow. The channel is 60 cm
long, 15 cm high and 9 cm wide. The example uses a grid cell size
of 1.5 cm by 1 cm by 1cm. The solid density is 1000kg/m3 and the
dry-solid particles have a constant radius of 50 or 100�m. The gas
is air at 300K and 103kPa. The liquid is water at 300K. The particle
close-pack volume fraction is 0.58.

The collisional relaxation of the particle velocities and liquid film
masses towards equilibrium values is governed by Eq. (2). The mo-
mentum and total relaxation times are proportional to the collision
time given by Eq. (13). The mechanism of the equilibration, which
involves momentum transfer and the flow of liquid film between
colliding particles, is not directly modeled. As with the BGK model
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Fig. 1. Computational domain and boundary conditions. Inlet fluid flow with solid feed from the left and exit at a pressure boundary condition on the right. The long-arrow
shows the injection direction in the center of the inlet face.

Table 1
Liquid and solid injection. Parameter variations indicated in boldface.

Case (type
of injected
particle)

Radii of feed
and injected
particles
rp (�m)

Particle feed
volume fraction
�p

Injection
velocity Ujet

(m/s)

Injection mass
flow rate ṁ
(kg/s)

1 (liquid) 50 0.2 5 0.02
2 (liquid) 100 0.2 5 0.02
3 (liquid) 50 0.4 5 0.04
4 (liquid) 50 0.2 10 0.04
5 (solid) 50 0.2 5 0.02

of gas dynamics, the progress to an equilibrium state is governed by
the relaxation time scales. The collision frequency depends on par-
ticle size, solids concentration and the magnitude of velocity fluctu-
ations. The effects of these parameters and the different time scales
for collisional momentum transfer and mass transfer are discussed
in the examples below. In the calculations, dissipation of particle
energy also occurs because of drag between particles and gas.

In calculations in the simple channel above, we explore the effects
of several parameters on collisional relaxation to velocity and liquid-
mass equilibrium. Four calculations of injection of liquid (Cases 1–4),
and one calculation of injection of dry solids (Case 5), are listed with
parameter variations indicated in boldface in Table 1. The liquid in-
jection is implemented by using liquid on a very small solid core.
The solid core radius is approximately 0.0001�m, which results in
a “liquid-particle”. We note that in our model the liquid particles
cannot deform or break up into new particles. The momentum and
total collision equilibration time scales are proportional to the col-
lision time as given by Eqs. (11) and (12). The ratio of time scales
is given by Eq. (36) and is a constant R = 4 in all calculations. The
rate coefficients are weighted by the ratio of local total liquid mass
to total solid mass and the momentum and total equilibrium time
scale coefficients are

Ku,
 + Kt,
 = KS + �
K
L

1 + �

, (61)

where 
 is a control volume and the constants are KS = 0.01 and
KL=0.1, for pure solid (�=0) and pure liquid (�=∞), respectively. The
sum of the rate coefficients is inversely proportional to the collisional
relaxation time to velocity equilibrium. Thus, Eq. (61) prescribes that
it takes about 100 collisions to achieve velocity equilibrium in a flow
of pure solids and about 10 collisions to achieve velocity equilibrium
in a flow of pure liquid droplets.

The variations in the four cases of liquid injection given in Table 1
provide a base for understanding the performance of collisionmixing
due to variations in key parameters. The calculations begin with
stagnant air and no particles in the channel. Air and dry solids are
then fed at a 1m/s into the system as illustrated in Fig. 1. The solids

are fed at a particle volume fraction of �p = 0.2 in Cases 1, 2 and
4, which gives a bed velocity of 1.25m/s. The feed volume fraction
in Case 3 is �p = 0.4 which gives a bed velocity of 1.67m/s. After
0.5 s, when the gas and solids flow pattern has been established in
the channel, the liquid-particle injection begins. The jet mass flux
matches the bulk stream solid flux in Cases 1–3, but is twice the solid
flux in Case 4. Fig. 2 shows the particle field for Case 1, which has
dense particles flowing at a volume fraction of 0.2. Fig. 2 is a thin-
slice of the three-dimensional space at the jet location. The solids
are colored by their speed, where fast is red and slow is blue. From
the figure, there is an expanding region of near constant velocity
about the particle injection line where particles are moving near
equilibrium velocity. While it is difficult to discern it from the figure,
the jet region is very close to the free stream velocity at the end of
the channel. The two particle fields shown in Fig. 2 are from a fine
grid and a coarser grid. The coarse grid was used for the majority of
calculations.

Fig. 3 shows velocities from Case 1 in which the liquid jet is in-
jected at 5m/s which is 5 times larger than the bulk solids flow ve-
locity. Also shown in Fig. 3 are velocities from Case 4, in which the
injection velocity is 10m/s. All the velocity profiles in Fig. 3 are along
the centerline of the jet. The bulk-mixture is dense solids flow with a
particle volume fraction of 20%. While there is a significant concen-
tration of solids, the solids are far from close pack, and the influence
of particle concentration on collision frequency gives a multiplier
on the order of one. The particle radius is small and will enhance
collision mixing, but without local particle velocity fluctuations, the
radius has no influence on collision frequency. At the jet nozzle, the
calculated root-mean-square velocity fluctuation, Urms, in Case 1 is
approximately 1.5m/s—which, in conjunction with the small parti-
cle sizes, gives a high collision frequency that drives the jet velocity
to the equilibrium velocity within 10 cm. In Case 1, Fig. 4 shows the
collision time, �coll, is 0.0002 s at the jet nozzle, and downstream, as
the particles approach the equilibrium velocity, the collision time in-
creases three orders of magnitude. At 10 cm from the entrance, the
collision time is approximately 0.01 s, and for this collision time and
a bulk stream velocity of 1.25m/s, there are approximately 48 colli-
sions before particles exit the channel. At 30 cm from the entrance,
which is midway in the channel, the collision time is approximately
0.1 s, and for this collision time and a bulk flow of 1.25m/s, there
are only 4 or 5 collisions before a solid exits the channel. The slow
decay towards equilibrium is expected the closer the velocity gets
to the equilibrium velocity. (The equilibrium velocity is the local
mass-averaged velocity of the combined liquid/solid phase.) If the
injected velocity doubles, as in Case 4, collisions increase as seen in
the collision time shown in Fig. 4. Both cases of particle injection at
5 and 10m/s quickly go to equilibrium, and although there is more
momentum in the higher velocity jet, both cases reach velocity equi-
librium along the centerline of the jet at nearly the same location.
As expected, Fig. 3 shows that, moving downstream, velocities along
the jet path go to the local equilibrium velocity, and the fluctuation
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Fig. 2. Particle field in a thin slice through the jet axis in a three-dimensional dense particle flow field. Injection speed is 5m/s and particle flow volume fraction is 0.2
(Case 1). (a) Grid cell size is 1.5 cm by 1 cm by 1 cm in the axial distance, vertical distance, and width distance, respectively. (b) Grid cell size is 0.8 cm by 0.6 cm by 0.6 cm
in the axial distance, vertical distance, and width distance, respectively.
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Fig. 3. Average liquid velocity Uliq , mass-averaged velocity of solids and liquid Ueq ,
and particle velocity fluctuation Urms (see Eq. (14)) along the centerline of the jet
in Cases 1 and 4 of Table 1.

velocity becomes small. From Fig. 2, it is seen that there is a slight
variation between bulk flow velocity and the expanding jet velocity,
and global momentum equilibrium is not fully reached.

Note that there are two types of equilibrium to be considered
here: the local velocity equilibrium of the liquid and solid particles
spoken of above and the velocity equilibrium of the jet with the bulk
flow exterior to the jet. Although the local velocities of solid and
liquid equilibrate along the centerlines of the jets at nearly the same
locations in Cases 1 and 4, from Fig. 3 the mass-averaged velocities
of the liquid and solid particles do not equilibrate to the bulk-flow
velocity until much farther downstream in Case 4, as one would
expect for this higher momentum jet.

Fig. 5 compares the velocities for injection of liquid and injection
of dry solids, Cases 1 and 5. The size, density and injection speed
were the same for both solid and liquid injected particles. In the
case for liquid injection, there is both liquid mass and momentum
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Fig. 4. The collision time along the injection path line for liquid injection in Cases 1
and 4. The injection rates are 5 and 10m/s, the dense particle flow volume fraction
is 0.2, and particles are 50�m.

transfer between particles, while for dry solids injection, there is
only momentum transfer between particles. As expected from the
collisionmodel, the liquid injected particleswent to localmomentum
equilibrium faster than dry solids.

Fig. 7, comparing velocities in Cases 1 and 2, shows the rate of ap-
proach to momentum equilibrium decreases when the particle size
is doubled. From Eq. (13), the collision time is linearly proportional
to particle size, and one might expect that the time (distance down-
stream) to reach local momentum equilibrium would be about twice
the time for particles with twice the size. Fig. 7 shows this doubling
of time (distance) to local equilibrium happens; however, in general,
this is not the case because of the complex interplay of solid–gas dy-
namics. Fig. 6 shows the collision time at distances down the channel.
Near the jet, the collision time is shorter for smaller particles than
larger particles, and smaller particles move toward velocity equilib-
rium faster than larger particles. Because the small particles quickly
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Fig. 5. Velocities of dry particles and liquid particle injection along the injection
path line in Cases 1 and 5. The injection rates are 5m/s, the dense particle flow
volume fraction is 0.2, and particles are 100�m.
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Fig. 6. Collision times for liquid particle injection along the injection path line.

approach velocity equilibrium, the velocity fluctuations quickly go
to zero. On the other hand, larger particles have a prolonged time
to velocity equilibrium, which gives prolonged larger velocity fluc-
tuations, and the collision time curves cross in Fig. 6. Fig. 7 shows
that the larger particles reach local velocity equilibriumwithin 20 cm
along the injection path, but do not reach velocity equilibrium with
the bulk flow before the particles exit the calculation domain.

In Case 3, bulk flow solids were fed at 40% volume fraction. Be-
cause this is far from close pack, there is only a small change from
Case 1, which used 20% volume fraction. The increased particle vol-
ume fraction is seen in the collision time shown in Fig. 6. As particles
go to close pack, the collision frequency goes to infinity and equi-
librium will instantly be reached (see Eq. (13)). This is a logical pic-
ture that particles inter-connected at the maximum compaction will
move as a solid body. While particle slipping and slight rearranging
at close pack may occur, for the most part, the packed particles will
move as a unit. The close-pack state is not limited to static piles of
granular material. In fluidized beds and other particle-flow systems,
particles collapse to close pack and re-fluidize.

The prior discussion focused on decay toward momentum equi-
librium. The particles also move toward total equilibrium. In this
isothermal case, total equilibrium is bothmass andmomentum equi-
librium. Liquid particles are injected into the stream of dry particles
and through collisions, liquid mass is transferred between particles.
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Fig. 8 shows the standard deviation, 	M , of the liquid mass distribu-
tion from its equilibrium distribution as given by Eq. (34), normal-
ized by the total liquid mass in a control volume


 = [
∑

p∈
Np(Mf − �
Ms)
2]1/2∑

p∈
NpMf
. (62)

The liquid mass distribution moves toward the total equilibrium
value of zero. The particles leaving the jet for Cases 1–4 are liquid
particles, and liquid is rapidly transferred between liquid particles
and dry or partially wetted particles in the vicinity of the jet. Fig. 8
shows that within the first 10 cm from the jet orifice, the normalized
standard deviation drops significantly, and after 10 cm, little liquid is
transferred between particles. Fluctuations in the curves in Fig. 8 are
a characteristic of stochastic flow of both dry and wet particles. The
slow decay to total equilibrium is seen in the particles approaching
momentum equilibrium (Figs. 3, 5 and 7) and the increase in colli-
sion time by two orders of magnitude in the first 10 cm from the jet
(Figs. 4 and 6). In the collision model, total equilibrium cannot be
attained if momentum equilibrium is achieved before total equilib-
rium is achieved.
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Table 2
Experimental and Barracuda simulation parameters for liquid injection into a fluidized bed.

Ariyapadi et al. (2003) (Section I) Barracuda simulation

Bed dimensions 20 × 20 × 100 cm 20 × 20 × 65 cm
Solid particle density (FCC) 1500kg/m3 1500kg/m3

Solid particle size distribution Standard FCC (Sauter mean diameter ∼ 70�m) Standard FCC
Bed inventory ∼ 9kg 9.3 kg
Expanded bed height ∼ 40 cm ∼ 40 cm
Injected liquid Ethanol (95% v/v) Ethanol
Density of injected liquid ∼ 800kg/m3 800kg/m3

Nozzle diameter 0.82mm Point source injection
Liquid droplet diameter Not reported 0.42mm
Injection time 10 s 10 s
Fluidization gas/conditions Air at ambient conditions Air at ambient conditions
KS N/A 0.01
KL N/A 0.1
Time scale ratio, R N/A 4

Table 3
Liquid jet parameters for Tests L 1 and L 3 by Ariyapadi et al. (2003).

Test L 1 Test L 3

Liquid mass flow rate (g/s) 2.9 6.0
Jet speed (m/s) 6.6 13.9
Fluidizing gas velocity (cm/s) 5.6 4.2

7. Liquid injection into a fluidized bed

Liquid is often injected into a fluidized bed or other solid–gas
systems. Cokers are a good example where liquid hydrocarbon is
sprayed into a hot fluidized bed of coke. The large surface area of
solids provides for rapid vaporization and chemical reactions. Colli-
sions between the liquid jet and solids spread liquid over the parti-
cles, and collisions between wet particles spread the liquid through
the bed. As discussed previously in the description of the collision
model, the collisions result in mass, momentum, and energy transfer
between particles. This section applies the collision model to injec-
tion of liquid into an isothermal fluidized bed. The collision model is
integrated into the CPFD software in the commercial code Barracuda.

The liquid injection experiment by Ariyapadi et al. (2003) is simu-
lated by the fluidized bed calculations. Ariyapadi et al. (2003) used a
non-intrusive X-ray imaging technique to investigate the horizontal
injection of liquid and gas–liquid jets into a gas–solids fluidized bed.
By examining the X-ray images of the fluidized bed, they obtained
jet penetration lengths and expansion angles under varied injection
conditions. X-ray movies showed the transient jet movement and
the interaction between the liquid jet and the fluidized bed. The ex-
periment was carried out in a bed with a cross section of 20 cm by
20 cm and a height of 100 cm. A straight-tube injection nozzle was
horizontally inserted into the bed and located about 4 cm above the
air distributor plate at the bottom. The nozzle exit (injection point) is
4 cm from the left wall and 10 cm from the front wall. The injection
direction is from left to right in the following figures. Experimental
conditions are listed in Table 2 together with calculation conditions.
Because Ariyapadi et al. focused primarily on liquid jet penetration,
the calculated results in this paper focus on jet penetration for dif-
ferent injection and fluidization conditions.

Two sets of injection and fluidization conditions were simulated;
these conditions correspond to Tests L 1 and L3 in Ariyapadi et al.
(2003) and parameters are listed in Table 3. The liquid mass flow
rate and jet velocity in Test L 1 are much smaller than those in Test L
3 while the fluidization gas velocity is larger in Test L 1. Calculations
were run without injection with the gas velocity of Test L 3 for 24 s
to establish a quasi-steady, fully fluidized bed. Figs. 9d and e show
the resulting instantaneous particle volume fraction distribution in
the whole fluidized bed and in a thin, center-cut slice, respectively,

at 24 s just before liquid injection. The bed is well fluidized but does
not exhibit strong bubbling. At 24 s, liquid is injected with conditions
of Test L 3 and the injection lasted 10 s, which was a typical injection
time in the experiment. The Test L 1 calculation was started from
the previous Test L 3 calculation at 24 s with fluidizing gas velocity
of 5.6 cm/s. The calculation was run for 6 s for the fluidized bed to
reach a quasi-steady condition and at 30 s, and liquid was injected
for 10 s.

Fig. 9 compares the liquid injection from the two calculations.
Figs. 9a and b show the particles colored by volume fraction mapped
to particles for Test L 1. With a lower fluidization velocity, Test L 3 is
less dynamic than Test L 1 but it also exhibits good fluidization as seen
in Figs. 9d and e. Both the experiment and the Barracuda simulation
show similar behavior; however, movies of the experiment showed
some liquid agglomeration at the end of the injection time which
was not predicted in the simulation. Figs. 9c and f show the liquid
distribution 10 s after start of injection. Test L 1, with a low liquid feed
rate and a high fluidization velocity, has a short penetration length
as seen in Fig. 9c. Near the nozzle, particles are primarily liquid (red),
and at the end of the jet, which is a few centimeters from the nozzle,
liquid particles begin dispersing to other particles through collisions.
Fig. 9f shows that the liquid jet at a higher feed rate with the lower
fluidizing gas speed penetrates much further into the bed. At the
end of the jet, the stream dances about and liquid is transferred to
the bed solids through collisions. In both cases, collisions between
particles have eliminated liquid particles in upper section of the bed,
and there is only a faint gray-red color representing solids with a
liquid film.

Ariyapadi et al. (2003) reported the maximum average horizon-
tal distance that the injected liquid penetrates into the bed from the
nozzle tip. From movies of the experiment, the jet penetration fluc-
tuates with time in the bubbling bed, and Ariyapadi et al. averaged
instantaneous penetration lengths from movie frames to get the in-
jection length. The simulated jet penetration length is calculated
the same way by averaging the instantaneous penetration lengths.
Fig. 10 shows time snapshots of liquid-particles only (solid and par-
tially wetted solid particles are not shown). The change in liquid-
particle size from liquid transfer through collisions is not seen in the
figures because particles are shown as pixels and not scaled by their
true size. Similar to the experiment, the true penetration length is
difficult to measure because older liquid particles are advected by
the bed motion back into the injection path. The averaged jet pene-
tration lengths inferred from Fig. 10 for the two test cases are listed
in Table 4. Both the experiment and simulation show that the jet
penetration in Test L 1 is much shorter than that in Test L 3. The cal-
culated jet penetration is longer than that reported by Ariyapadi et
al. Assuming that Barracuda has calculated bed characteristics well,
the calculated longer penetration length suggests that the predicted
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Fig. 9. Snapshots of the fluidized bed before and after liquid injection. Top row: Test L 1. Bottom row: Test L 3. First column: whole fluidized bed prior to liquid injection
with particles colored (gray-scale) by volume fraction. Center column: thin center-slice showing particle colored (gray-scale) by volume fraction prior to liquid injection.
Third column: thin center-slice showing particles colored (gray to red) by the fraction of liquid film at 10 s after the injection.

collision frequency is too low. The model requires two relaxation
constants KS and KL (see Eq. (61)) which could be adjusted to give a
better fit to measured penetration data, however, the fidelity of the
experiment data is not adequate to provide a better definition of the
constants.

8. Summary and conclusions

A new model for the numerical calculation of collisional transfer
of mass, momentum, and energy among bed particles in fluidized
beds has been developed. The new model is an extension of the
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Fig. 10. Calculated liquid droplet distributions at different times after injection, in simulations of the experiments of Ariyapadi et al. (2003). Left column: Test L 1. Right
column: Test L 3. Times after injection are 2, 4, 6, 8, and 10 s from top to bottom.

MP-PIC method for calculating dense particulate flows (Andrews
and O'Rourke, 1996; Snider et al., 1998; Snider, 2001) and has
been incorporated into the commercial Barracuda code. In this pa-
per we have detailed the equations of the method, the numerical
solution procedure for the collision terms, and some properties

of the new collision terms. The new collision model resembles
the BGK model of gas dynamics (Vincenti and Kruger, 1975),
but there are two BGK-like collision terms used to represent the
differing rates at which momentum and total equilibrium are
achieved.
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Table 4
Jet penetration length by experiment and simulation.

Case Experiment by Ariyapadi et al.
(2003)

Current simulation

Test L 1 3.3 5.1
Test L 3 7.3 9.7

The newmodel has been tested in a series of calculations of liquid
injection into a channel of flowing gas and solids, and in calculations
simulating the fluidized bed experiments of Ariyapadi et al. (2003).
The channel flow calculations demonstrated that the model gives
expected trends when injection and channel flow parameters are
varied, and that, in this simple channel flow example, momentum
equilibrium can be achieved before complete mass transfer between
liquid droplets and solid particles has occurred.

In the calculations of the fluidized beds, the simulated appearance
of the liquid jets compared well with the movies of the experimental
jets, and the expected variations in jet penetration were observed in
the calculations when bed and jet velocities were varied. It was not
possible to use the experiments to learn about the values of constants
in the collision model because of the small number of experiments
and the large error bars in the measurements of jet penetration.

Further experiments and simulations are needed to refine the
model and determine the values of unknown model constants gov-
erning collisional relaxation to equilibrium, and the model needs to
be extended to, and tested for, non-isothermal circumstances. These
tests and extensions are underway and will be reported in future
publications.
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